In this article, we will cover how to iterate over rows in a DataFrame in Pandas.
How to iterate over rows in a DataFrame in Pandas
Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Pandas is one of those packages and makes importing and analyzing data much easier.
Let’s see the Different ways to iterate over rows in Pandas Dataframe :
Method 1: Using the index attribute of the Dataframe.
Python3
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = { 'Name' : [ 'Ankit' , 'Amit' , 'Aishwarya' , 'Priyanka' ], 'Age' : [ 21 , 19 , 20 , 18 ], 'Stream' : [ 'Math' , 'Commerce' , 'Arts' , 'Biology' ], 'Percentage' : [ 88 , 92 , 95 , 70 ]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns = [ 'Name' , 'Age' , 'Stream' , 'Percentage' ]) print ( "Given Dataframe :\n" , df) print ( "\nIterating over rows using index attribute :\n" ) # iterate through each row and select # 'Name' and 'Stream' column respectively. for ind in df.index: print (df[ 'Name' ][ind], df[ 'Stream' ][ind]) |
Output:
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using index attribute :
Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology
Method 2: Using loc[] function of the Dataframe.
Python3
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = { 'Name' : [ 'Ankit' , 'Amit' , 'Aishwarya' , 'Priyanka' ], 'Age' : [ 21 , 19 , 20 , 18 ], 'Stream' : [ 'Math' , 'Commerce' , 'Arts' , 'Biology' ], 'Percentage' : [ 88 , 92 , 95 , 70 ]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns = [ 'Name' , 'Age' , 'Stream' , 'Percentage' ]) print ( "Given Dataframe :\n" , df) print ( "\nIterating over rows using loc function :\n" ) # iterate through each row and select # 'Name' and 'Age' column respectively. for i in range ( len (df)): print (df.loc[i, "Name" ], df.loc[i, "Age" ]) |
Output:
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using loc function :
Ankit 21
Amit 19
Aishwarya 20
Priyanka 18
Method 3: Using iloc[] function of the DataFrame.
Python3
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = { 'Name' : [ 'Ankit' , 'Amit' , 'Aishwarya' , 'Priyanka' ], 'Age' : [ 21 , 19 , 20 , 18 ], 'Stream' : [ 'Math' , 'Commerce' , 'Arts' , 'Biology' ], 'Percentage' : [ 88 , 92 , 95 , 70 ]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns = [ 'Name' , 'Age' , 'Stream' , 'Percentage' ]) print ( "Given Dataframe :\n" , df) print ( "\nIterating over rows using iloc function :\n" ) # iterate through each row and select # 0th and 2nd index column respectively. for i in range ( len (df)): print (df.iloc[i, 0 ], df.iloc[i, 2 ]) |
Output:
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using iloc function :
Ankit Math
Amit Commerce
Aishwarya Arts
Priyanka Biology
Method 4: Using iterrows() method of the Dataframe.
Python3
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = { 'Name' : [ 'Ankit' , 'Amit' , 'Aishwarya' , 'Priyanka' ], 'Age' : [ 21 , 19 , 20 , 18 ], 'Stream' : [ 'Math' , 'Commerce' , 'Arts' , 'Biology' ], 'Percentage' : [ 88 , 92 , 95 , 70 ]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns = [ 'Name' , 'Age' , 'Stream' , 'Percentage' ]) print ( "Given Dataframe :\n" , df) print ( "\nIterating over rows using iterrows() method :\n" ) # iterate through each row and select # 'Name' and 'Age' column respectively. for index, row in df.iterrows(): print (row[ "Name" ], row[ "Age" ]) |
Output:
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using iterrows() method :
Ankit 21
Amit 19
Aishwarya 20
Priyanka 18
Method 5: Using itertuples() method of the Dataframe.
Python3
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = { 'Name' : [ 'Ankit' , 'Amit' , 'Aishwarya' , 'Priyanka' ], 'Age' : [ 21 , 19 , 20 , 18 ], 'Stream' : [ 'Math' , 'Commerce' , 'Arts' , 'Biology' ], 'Percentage' : [ 88 , 92 , 95 , 70 ]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns = [ 'Name' , 'Age' , 'Stream' , 'Percentage' ]) print ( "Given Dataframe :\n" , df) print ( "\nIterating over rows using itertuples() method :\n" ) # iterate through each row and select # 'Name' and 'Percentage' column respectively. for row in df.itertuples(index = True , name = 'Pandas' ): print ( getattr (row, "Name" ), getattr (row, "Percentage" )) |
Output:
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using itertuples() method :
Ankit 88
Amit 92
Aishwarya 95
Priyanka 70
Method 6: Using apply() method of the Dataframe.
Python3
# import pandas package as pd import pandas as pd # Define a dictionary containing students data data = { 'Name' : [ 'Ankit' , 'Amit' , 'Aishwarya' , 'Priyanka' ], 'Age' : [ 21 , 19 , 20 , 18 ], 'Stream' : [ 'Math' , 'Commerce' , 'Arts' , 'Biology' ], 'Percentage' : [ 88 , 92 , 95 , 70 ]} # Convert the dictionary into DataFrame df = pd.DataFrame(data, columns = [ 'Name' , 'Age' , 'Stream' , 'Percentage' ]) print ( "Given Dataframe :\n" , df) print ( "\nIterating over rows using apply function :\n" ) # iterate through each row and concatenate # 'Name' and 'Percentage' column respectively. print (df. apply ( lambda row: row[ "Name" ] + " " + str (row[ "Percentage" ]), axis = 1 )) |
Output:
Given Dataframe :
Name Age Stream Percentage
0 Ankit 21 Math 88
1 Amit 19 Commerce 92
2 Aishwarya 20 Arts 95
3 Priyanka 18 Biology 70
Iterating over rows using apply function :
0 Ankit 88
1 Amit 92
2 Aishwarya 95
3 Priyanka 70
dtype: object