Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AICount of pass required to visit same index again by moving arr...

Count of pass required to visit same index again by moving arr[i] to index arr[i]

Given an array(1-based indexing) arr[] of permutation of the first N natural numbers, the task for each element is to find the number of moves required to reach that index such that in each move, array element at index i moves to the array element at index arr[i].

Examples:

Input: arr[] = {2, 3, 1}
Output: 3 3 3  
Explanation:
For array element arr[1] = 2, the set of moves of indices are 1 -> 2 -> 3 -> 1. The total count of moves required is 3.
For array element arr[2] = 3, the set of moves of indices are 2 -> 3 -> 1 -> 2. The total count of moves required is 3.
For array element arr[3] = 1, the set of moves of indices are 3 -> 1 -> 2 -> 3. The total count of moves required is 3.

Input: arr[] = {4, 6, 2, 1, 5, 3}
Output: 2 3 3 2 1 3

Approach: The given problem can be solved by finding the number of moves required for every array element for each index. Follow the steps below to solve the given problem:

  • Traverse the given array arr[] using the variable i and perform the following steps:
    • Initialize a variable, say count that stores the total number of moves required.
    • Initialize a variable, say K as i and iterate a do-while loop and in that loop update the value of K to arr[K] and increment the value of count by 1 until K is not the same as the value of i.
    • After completing the above steps, print the value of count as the resultant count of move required for the current index.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number of moves
// required to visit the same index
// again for every array element
void numberOfPasses(vector<int> arr, int N)
{
    // Make given array 0 index based
    for (int i = 0; i < N; ++i) {
        --arr[i];
    }
 
    for (int i = 0; i < N; ++i) {
 
        // Stores the number of moves
        int cnt = 0;
 
        // Store index value
        int k = i;
 
        do {
 
            // Update the value of cnt
            ++cnt;
 
            // Make a pass
            k = arr[k];
 
        } while (k != i);
 
        // Print the value of cnt
        cout << cnt << " ";
    }
}
 
// Driver Code
int main()
{
    vector<int> arr{ 4, 6, 2, 1, 5, 3 };
    int N = arr.size();
    numberOfPasses(arr, N);
 
    return 0;
}


Java




// Java program for the above approach
import java.io.*;
 
class GFG
{
 
  // Function to find the number of moves
  // required to visit the same index
  // again for every array element
  static void numberOfPasses(int[] arr, int N)
  {
 
    // Make given array 0 index based
    for (int i = 0; i < N; ++i) {
      --arr[i];
    }
 
    for (int i = 0; i < N; ++i) {
 
      // Stores the number of moves
      int cnt = 0;
 
      // Store index value
      int k = i;
 
      do {
 
        // Update the value of cnt
        ++cnt;
 
        // Make a pass
        k = arr[k];
 
      } while (k != i);
 
      // Print the value of cnt
      System.out.print(cnt+" ");
    }
  }
 
  // Driver Code
  public static void main (String[] args)
  {
    int[] arr = { 4, 6, 2, 1, 5, 3 };
    int N = arr.length;
    numberOfPasses(arr, N);
 
  }
}
 
// This code is contributed by Potta Lokesh


Python3




# Python program for the above approach
 
# Function to find the number of moves
# required to visit the same index
# again for every array element
def numberOfPasses(arr, N):
 
    # Make given array 0 index based
    for i in range(0, N): 
        arr[i] = arr[i] - 1
     
 
    for i in range(0, N):
 
        # Stores the number of moves
        cnt = 0;
 
        # Store index value
        k = i;
 
        while(True):
 
            # Update the value of cnt
            cnt = cnt + 1
 
            # Make a pass
            k = arr[k]
 
            if (k == i):
                break;
 
        # Print the value of cnt
        print(cnt, end=" ")
     
# Driver Code
 
arr = [4, 6, 2, 1, 5, 3]
N = len(arr)
numberOfPasses(arr, N)
 
# This code is contributed by ihritik


C#




// C# program for the above approach
using System;
using System.Collections.Generic;
 
class GFG{
 
// Function to find the number of moves
// required to visit the same index
// again for every array element
static void numberOfPasses(int []arr, int N)
{
 
    // Make given array 0 index based
    for (int i = 0; i < N; ++i) {
        --arr[i];
    }
 
    for (int i = 0; i < N; ++i) {
 
    // Stores the number of moves
    int cnt = 0;
 
    // Store index value
    int k = i;
 
    do {
        // Update the value of cnt
        ++cnt;
 
        // Make a pass
        k = arr[k];
 
    } while (k != i);
 
    // Print the value of cnt
    Console.Write(cnt + " ");
    }
}
 
// Driver Code
public static void Main()
{
    int []arr = { 4, 6, 2, 1, 5, 3 };
    int N = arr.Length;
    numberOfPasses(arr, N);
}
}
 
// This code is contributed by Samim Hossain Mondal


Javascript




<script>
    // JavaScript program for the above approach
 
    // Function to find the number of moves
    // required to visit the same index
    // again for every array element
    const numberOfPasses = (arr, N) => {
        // Make given array 0 index based
        for (let i = 0; i < N; ++i) {
            --arr[i];
        }
 
        for (let i = 0; i < N; ++i) {
 
            // Stores the number of moves
            let cnt = 0;
 
            // Store index value
            let k = i;
 
            do {
 
                // Update the value of cnt
                ++cnt;
 
                // Make a pass
                k = arr[k];
 
            } while (k != i);
 
            // Print the value of cnt
            document.write(`${cnt} `);
        }
    }
 
    // Driver Code
    let arr = [4, 6, 2, 1, 5, 3];
    let N = arr.length;
    numberOfPasses(arr, N);
 
    // This code is contributed by rakeshsahni
     
</script>


Output

2 3 3 2 1 3 

Time Complexity: O(N2)
Auxiliary Space: O(1)

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
15 Nov, 2021
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments