Given an array(1-based indexing) arr[] of permutation of the first N natural numbers, the task for each element is to find the number of moves required to reach that index such that in each move, array element at index i moves to the array element at index arr[i].
Examples:
Input: arr[] = {2, 3, 1}
Output: 3 3 3
Explanation:
For array element arr[1] = 2, the set of moves of indices are 1 -> 2 -> 3 -> 1. The total count of moves required is 3.
For array element arr[2] = 3, the set of moves of indices are 2 -> 3 -> 1 -> 2. The total count of moves required is 3.
For array element arr[3] = 1, the set of moves of indices are 3 -> 1 -> 2 -> 3. The total count of moves required is 3.Input: arr[] = {4, 6, 2, 1, 5, 3}
Output: 2 3 3 2 1 3
Approach: The given problem can be solved by finding the number of moves required for every array element for each index. Follow the steps below to solve the given problem:
- Traverse the given array arr[] using the variable i and perform the following steps:
- Initialize a variable, say count that stores the total number of moves required.
- Initialize a variable, say K as i and iterate a do-while loop and in that loop update the value of K to arr[K] and increment the value of count by 1 until K is not the same as the value of i.
- After completing the above steps, print the value of count as the resultant count of move required for the current index.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the number of moves // required to visit the same index // again for every array element void numberOfPasses(vector< int > arr, int N) { // Make given array 0 index based for ( int i = 0; i < N; ++i) { --arr[i]; } for ( int i = 0; i < N; ++i) { // Stores the number of moves int cnt = 0; // Store index value int k = i; do { // Update the value of cnt ++cnt; // Make a pass k = arr[k]; } while (k != i); // Print the value of cnt cout << cnt << " " ; } } // Driver Code int main() { vector< int > arr{ 4, 6, 2, 1, 5, 3 }; int N = arr.size(); numberOfPasses(arr, N); return 0; } |
Java
// Java program for the above approach import java.io.*; class GFG { // Function to find the number of moves // required to visit the same index // again for every array element static void numberOfPasses( int [] arr, int N) { // Make given array 0 index based for ( int i = 0 ; i < N; ++i) { --arr[i]; } for ( int i = 0 ; i < N; ++i) { // Stores the number of moves int cnt = 0 ; // Store index value int k = i; do { // Update the value of cnt ++cnt; // Make a pass k = arr[k]; } while (k != i); // Print the value of cnt System.out.print(cnt+ " " ); } } // Driver Code public static void main (String[] args) { int [] arr = { 4 , 6 , 2 , 1 , 5 , 3 }; int N = arr.length; numberOfPasses(arr, N); } } // This code is contributed by Potta Lokesh |
Python3
# Python program for the above approach # Function to find the number of moves # required to visit the same index # again for every array element def numberOfPasses(arr, N): # Make given array 0 index based for i in range ( 0 , N): arr[i] = arr[i] - 1 for i in range ( 0 , N): # Stores the number of moves cnt = 0 ; # Store index value k = i; while ( True ): # Update the value of cnt cnt = cnt + 1 # Make a pass k = arr[k] if (k = = i): break ; # Print the value of cnt print (cnt, end = " " ) # Driver Code arr = [ 4 , 6 , 2 , 1 , 5 , 3 ] N = len (arr) numberOfPasses(arr, N) # This code is contributed by ihritik |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG{ // Function to find the number of moves // required to visit the same index // again for every array element static void numberOfPasses( int []arr, int N) { // Make given array 0 index based for ( int i = 0; i < N; ++i) { --arr[i]; } for ( int i = 0; i < N; ++i) { // Stores the number of moves int cnt = 0; // Store index value int k = i; do { // Update the value of cnt ++cnt; // Make a pass k = arr[k]; } while (k != i); // Print the value of cnt Console.Write(cnt + " " ); } } // Driver Code public static void Main() { int []arr = { 4, 6, 2, 1, 5, 3 }; int N = arr.Length; numberOfPasses(arr, N); } } // This code is contributed by Samim Hossain Mondal |
Javascript
<script> // JavaScript program for the above approach // Function to find the number of moves // required to visit the same index // again for every array element const numberOfPasses = (arr, N) => { // Make given array 0 index based for (let i = 0; i < N; ++i) { --arr[i]; } for (let i = 0; i < N; ++i) { // Stores the number of moves let cnt = 0; // Store index value let k = i; do { // Update the value of cnt ++cnt; // Make a pass k = arr[k]; } while (k != i); // Print the value of cnt document.write(`${cnt} `); } } // Driver Code let arr = [4, 6, 2, 1, 5, 3]; let N = arr.length; numberOfPasses(arr, N); // This code is contributed by rakeshsahni </script> |
2 3 3 2 1 3
Time Complexity: O(N2)
Auxiliary Space: O(1)
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!