Saturday, November 16, 2024
Google search engine
HomeData Modelling & AICount of cells equal to X in Matrix constructed as sum of...

Count of cells equal to X in Matrix constructed as sum of rows and columns

Given integer N denoting the size of a square matrix whose each element is the sum of its row and column i.e., mat[i][j] = i + j (0 < i, j, ≤ N), and an integer X, the task is to find how many cells have the value X.

Examples: 

Input: N = 4, X = 2
Output: 1
Explanation: The matrix we get after using M(a, b) = a + b is:
2 3 4 5 
3 4 5 6 
4 5 6 7
5 6 7 8
At M[1][1] = X There is only value equals to 2.

Input: N = 3, X = 4
Output: 3
Explanation: The matrix we get after using M(a, b) = a + b is:
2 3 4
3 4 5
4 5 6
At M[1][3], M[2][2], M[3][1] = X There is 3 Times x appears.

Input: N = 1, X = 3
Output: 0
Explanation: The matrix we get after using M(a, b) = a + b is:
The matrix is { 2 }. So no value 3

 

Naive Approach: The easiest way is to create the Matrix and count the cells have value X.

Below is the implementation of the above approach.

C++




// C++ code of the above approach.
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number of times
// X is present in the matrix
long long int solve(long long int n,
                    long long int x)
{
    long long int total = 0;
 
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= n; j++)
 
            if (i + j == x)
                total++;
    }
 
    return total;
}
 
// Driver code
int main()
{
 
    int N = 4;
    int X = 2;
 
    cout << solve(N, X);
    return 0;
}


Java




// Java code of the above approach.
import java.io.*;
 
class GFG {
 
  // Function to find the number of times
  // X is present in the matrix
  static long  solve(long  n,
                     long  x)
  {
    long  total = 0;
 
    for (int i = 1; i <= n; i++) {
      for (int j = 1; j <= n; j++)
 
        if (i + j == x)
          total++;
    }
 
    return total;
  }
 
  // Driver code
  public static void main (String[] args) {
    int N = 4;
    int X = 2;
 
    System.out.println(solve(N, X));
  }
}
 
// This code is contributed by hrithikgarg03188.


Python3




# Python3 code of the above approach.
 
# Function to find the number of times
# X is present in the matrix
def solve(n, x):
    total = 0;
    for i in range(1, n + 1):
        for j in range(1, n + 1):
            if (i + j == x):
                total += 1;
    return total;
 
# Driver code
if __name__ == '__main__':
    N = 4;
    X = 2;
 
    print(solve(N, X));
 
# This code is contributed by gauravrajput1


C#




// C# code of the above approach.
using System;
 
class GFG {
 
    // Function to find the number of times
    // X is present in the matrix
    static long solve(long n, long x)
    {
        long total = 0;
 
        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= n; j++)
 
                if (i + j == x)
                    total++;
        }
 
        return total;
    }
 
    // Driver code
    public static void Main()
    {
        int N = 4;
        int X = 2;
 
        Console.WriteLine(solve(N, X));
    }
}
 
// This code is contributed by Samim Hossain Mondal.


Javascript




<script>
    // JavaScript code for the above approach
 
// Function to find the number of times
// X is present in the matrix
function solve(n, x)
{
    let total = 0;
 
    for (let i = 1; i <= n; i++) {
        for (let j = 1; j <= n; j++)
 
            if (i + j == x)
                total++;
    }
 
    return total;
}
 
    // Driver Code
    let N = 4;
    let X = 2;
 
    document.write(solve(N, X));
     
    // This code is contributed by code_hunt.
</script>


 
 

Output

1

 

Time Complexity: O(N2)
Auxiliary Space: O(1)

 

Efficient Approach: The problem can be efficiently solved using the following mathematical observation:

 

The numbers across the secondary diagonal (top-right to bottom-left) and parallel to those will be the same.
The value in the secondary diagonal will be (1 + N). 
The minimum value in a diagonal will be 2 and maximum will be N+N = 2*N.

So there can be two cases:

When X < N+1:
    => It will be on the upper half of the secondary diagonal.
    => X can be formed by [1 + (X-1)], [2 + (X-2)], [3 + (X-3)] + . . . + [(X-1)+1].
    => From the above arrangement it can be seen that the X will be in the cells (1, X-1), (2, X-2), (3, X-3), . . ., (X-1, 1).
    => So total occurrences are is the total number of values in range [1, X-1] = X – 1.

When X > N+1:
    => It will be on the lower half of the secondary diagonal.
    => X can be formed by [(X-N) + N], [(X-N+1) + N-1], [(X-N+2) + (N-2)] + . . . + [N + (X-N)].
    => From the above arrangement it can be seen that the X will be in the cells (X-N, N), (X-N+1, N-1), ( X-N+2, N-2), . . ., (N, X-N).
    => So total occurrences are is the total number of values in range [X-N, N] = N – (X – N) + 1 = 2*N – X + 1.

(N+1) can be considered in any of the cases and that will give result as N.

 

Follow the steps mentioned below to implement the above observation:

 

  • Check if X is greater than N+1 or not.
  • Then use the formula as derived above.

 

Below is the implementation of the above approach.

 

C++




// C++ code for the above approach.
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find
// the number of occurrences of X
long long int solve(long long int N,
                    long long int X)
{
    if (X == 0 || X > 2 * N)
        return 0;
 
    if (X <= N + 1)
        return X - 1;
    else
        return N + N + 1 - X;
}
 
// Driver code
int main()
{
 
    int N = 4;
    int X = 2;
 
    cout << solve(N, X);
    return 0;
}


Java




// Java Program of the above approach.
import java.util.*;
class GFG {
 
  // Function to find
  // the number of occurrences of X
  static int solve(int N, int X)
  {
    if (X == 0 || X > 2 * N)
      return 0;
 
    if (X <= N + 1)
      return X - 1;
    else
      return N + N + 1 - X;
  }
 
  // Driver Code
  public static void main(String args[])
  {
    int N = 4;
    int X = 2;
 
    System.out.print(solve(N, X));
  }
}
 
// This code is contributed by code_hunt.


Python3




# Python code for the above approach
 
# Function to find
# the number of occurrences of X
def solve(N, X) :
     
    if (X == 0 or X > 2 * N) :
        return 0
 
    if (X <= N + 1) :
        return X - 1
    else :
        return N + N + 1 - X
 
# Driver code
N = 4
X = 2
 
print(solve(N, X))
 
# This code is contributed by sanjoy_62.


C#




// C# Program of the above approach.
using System;
 
class GFG {
 
    // Function to find
    // the number of occurrences of X
    static int solve(int N, int X)
    {
        if (X == 0 || X > 2 * N)
            return 0;
 
        if (X <= N + 1)
            return X - 1;
        else
            return N + N + 1 - X;
    }
 
    // Driver Code
    public static void Main()
    {
        int N = 4;
        int X = 2;
 
        Console.Write(solve(N, X));
    }
}
 
// This code is contributed by ukasp.


Javascript




<script>
    // JavaScript code for the above approach.
 
    // Function to find
    // the number of occurrences of X
    const solve = (N, X) => {
        if (X == 0 || X > 2 * N)
            return 0;
 
        if (X <= N + 1)
            return X - 1;
        else
            return N + N + 1 - X;
    }
 
    // Driver code
    let N = 4;
    let X = 2;
    document.write(solve(N, X));
 
// This code is contributed by rakeshsahni
 
</script>


 
 

Output

1

 

Time Complexity: O(1)
Auxiliary Space: O(1)

 

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
19 Sep, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments