Wednesday, November 20, 2024
Google search engine
HomeData Modelling & AICount non-overlapping Subarrays of size K with equal alternate elements

Count non-overlapping Subarrays of size K with equal alternate elements

Given an array arr[] of length N, the task is to find the count of non-overlapping subarrays of size K such that the alternate elements are equal.

Examples:

Input: arr[] = {2, 4, 2, 7}, K = 3
Output: 1
Explanation:  Given subarray {2, 4, 2} is a valid array because the elements in even position(index no.0 and 2) are equal. Hence the count of the subarrays with size K = 3 is 1.

Input: arr[] =  {5, 2, 5, 2, 3, 9, 7, 9, 7}, K = 4
Output: 2
Explanation:  Subarray {5, 2, 5, 2} and {9, 7, 9, 7} are valid subarrays because the elements in even position(index no.0 and 2) and odd positions(index no.1 and 3) are equal.  Hence the count of the subarrays with size K = 4 is 2.

Approach: Implement the idea below to solve the problem

Initially find all the non-overlapping subarrays where  alternate elements are equal. Comparing the lengths of each such subarray with K, we can find out how many valid subarrays of size K can be extracted from each of those.

Follow the below steps to implement the idea:

  • Initialize t = 2  in starting and c = 0, to maintain the count of subarrays.
  • Iterate over the array from index 2.
  • Whenever we found arr[i] = arr[i-2], increment t by 1.
  • When t gets equal to K, increase c by 1 and reset t = 0.
  • If the length of the given array arr[] is less than 2, see the value of K and return the output accordingly.
  • After iterating over the array, return c as the count subarrays.

Below is the implementation of the above approach.

C++




// C++ code to implement the approach
#include <iostream>
using namespace std;
 
// Function to find the count of subarrays
int fun(int arr[], int k, int n)
{
 
  // For checking the length of array
  if (n <= 2) {
    if (k == 1) {
      return n;
    }
    else if (k == 2) {
      return 1;
    }
    else {
      return 0;
    }
  }
  int t = 2;
  int c = 0;
 
  // Loop through the array from 2 to arr.length
  for (int i = 2; i < n; i++)
  {
    // For checking the array elements at odd and
    // even index
    if (arr[i] == arr[i - 2]) {
      t = t + 1;
    }
    else {
      t = 2;
    }
 
    // check whether current size equals k
    if (t == k)
    {
      // Increment the count by 1
      c = c + 1;
      t = 0;
    }
  }
  return c;
}
 
int main() {
 
  int arr[] = { 5, 2, 5, 2, 5, 2, 5, 2, 3, 9, 7, 9, 7 };
  int K = 4;
  int n = sizeof(arr) / sizeof(arr[0]);
 
  // Function call
  cout << fun(arr, K, n) << endl;
 
  return 0;
}
 
// This code is contributed by lokesh.


Java




// Java code to implement the approach
import java.io.*;
 
class GFG {
 
  // Function to find the cound of subarrays
  static int fun(int[] arr, int k)
  {
 
    // For checking the length of array
    if (arr.length <= 2) {
      if (k == 1) {
        return arr.length;
      }
      else if (k == 2) {
        return 1;
      }
      else {
        return 0;
      }
    }
    int t = 2;
    int c = 0;
 
    // Loop through the array from 2 to arr.length
    for (int i = 2; i < arr.length; i++)
    {
 
      // For checking the array elements at odd and
      // even index
      if (arr[i] == arr[i - 2]) {
        t = t + 1;
      }
      else {
        t = 2;
      }
 
      // check whether current size equals k
      if (t == k)
      {
 
        // Increment the count by 1
        c = c + 1;
        t = 0;
      }
    }
    return c;
  }
 
  public static void main(String[] args)
  {
    int[] arr
      = { 5, 2, 5, 2, 5, 2, 5, 2, 3, 9, 7, 9, 7 };
    int K = 4;
 
    // Function call
    System.out.print(fun(arr, K));
  }
}
 
// This code is contributed by lokeshmvs21.


Python3




# Python code to implement the approach
 
 
# Function to find the count of subarrays
def fun(arr, k):
 
    # For checking the length of array
    if len(arr) <= 2:
        if k == 1:
            return len(arr)
        elif k == 2:
            return 1
        else:
            return 0
 
    else:
        # For storing current subarray
        t = 2
        c = 0
 
        # Loop through the array from 2 to len(arr)
        for i in range(2, len(arr)):
 
            # For checking the array elements at
            # odd and even index
            if arr[i] == arr[i-2]:
 
                t = t + 1
            else:
                t = 2
 
            # check whether current size
            # equals k
            if t == k:
 
                # Increment the count by 1
                c += 1
                t = 0
        return c
 
 
# Driver code
if __name__ == '__main__':
 
    arr = [5, 2, 5, 2, 5, 2, 5, 2, 3, 9, 7, 9, 7]
    K = 4
 
    # Function call
    print(fun(arr, K))


C#




// C# code to implement the approach
using System;
 
class GFG {
 
// Function to find the cound of subarrays
static int fun(int[] arr, int k)
{
 
    // For checking the length of array
    if (arr.Length <= 2) {
    if (k == 1) {
        return arr.Length;
    }
    else if (k == 2) {
        return 1;
    }
    else {
        return 0;
    }
    }
    int t = 2;
    int c = 0;
 
    // Loop through the array from 2 to arr.length
    for (int i = 2; i < arr.Length; i++)
    {
 
    // For checking the array elements at odd and
    // even index
    if (arr[i] == arr[i - 2]) {
        t = t + 1;
    }
    else {
        t = 2;
    }
 
    // check whether current size equals k
    if (t == k)
    {
 
        // Increment the count by 1
        c = c + 1;
        t = 0;
    }
    }
    return c;
}
 
static public void Main ()
{
    int[] arr= { 5, 2, 5, 2, 5, 2, 5, 2, 3, 9, 7, 9, 7 };
    int K = 4;
 
    // Function call
    Console.Write(fun(arr, K));
}
}
 
// This code is contributed by Pushpesh Raj.


Javascript




// javascript code to implement the approach
 
// Function to find the count of subarrays
function fun(arr, k, n)
{
 
  // For checking the length of array
  if (n <= 2) {
    if (k == 1) {
      return n;
    }
    else if (k == 2) {
      return 1;
    }
    else {
      return 0;
    }
  }
  let t = 2;
  let c = 0;
 
  // Loop through the array from 2 to arr.length
  for (let i = 2; i < n; i++)
  {
    // For checking the array elements at odd and
    // even index
    if (arr[i] == arr[i - 2]) {
      t = t + 1;
    }
    else {
      t = 2;
    }
 
    // check whether current size equals k
    if (t == k)
    {
      // Increment the count by 1
      c = c + 1;
      t = 0;
    }
  }
  return c;
}
 
let arr = [ 5, 2, 5, 2, 5, 2, 5, 2, 3, 9, 7, 9, 7 ];
  let K = 4;
  let n = arr.length;
 
  // Function call
  console.log(fun(arr, K, n));
   
  // This code is contributed by garg28harsh.


Output

3

Time Complexity: O(N)
Auxiliary Space: O(1)

Related Articles:

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 neveropen!

Commit to GfG’s Three-90 Challenge! Purchase a course, complete 90% in 90 days, and save 90% cost click here to explore.

Last Updated :
28 Dec, 2022
Like Article
Save Article


Previous

<!–

8 Min Read | Java

–>


Next


<!–

8 Min Read | Java

–>

Share your thoughts in the comments

RELATED ARTICLES

Most Popular

Recent Comments