With the help of sympy.integrate(expression, limit)
method, we can find the integration of mathematical expressions using limits in the form of variables by using sympy.integrate(expression, limit)
method.
Syntax :
sympy.integrate(expression, reference variable, limit)
Return : Return integration of mathematical expression.
Example #1 :
In this example we can see that by using sympy.integrate(expression, limits)
method, we can find the integration of mathematical expression using limits with variables. Here we use symbols()
method also to declare a variable as symbol.
# import sympy from sympy import * x, y = symbols( 'x y' ) gfg_exp = cos(x) print ( "Before Integration : {}" . format (gfg_exp)) # Use sympy.integrate() method intr = integrate(gfg_exp, (x, - oo, oo)) print ( "After Integration : {}" . format (intr)) |
Output :
Before Integration : cos(x)
After Integration : AccumBounds(-2, 2)
Example #2 :
# import sympy from sympy import * x, y = symbols( 'x y' ) gfg_exp = tan(x) print ( "Before Integration : {}" . format (gfg_exp)) # Use sympy.integrate() method intr = integrate(gfg_exp, (x, - 1 , 1 )) print ( "After Integration : {}" . format (intr)) |
Output :
Before Integration : tan(x)
After Integration : 0