Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.
Pandas Series.as_matrix()
function is used to convert the given series or dataframe object to Numpy-array representation.
Syntax: Series.as_matrix(columns=None)
Parameter :
columns : If None, return all columns, otherwise, returns specified columns.Returns : values : ndarray
Example #1: Use Series.as_matrix()
function to return the numpy-array representation of the given series object.
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([ 'New York' , 'Chicago' , 'Toronto' , 'Lisbon' , 'Rio' ]) # Create the Index index_ = [ 'City 1' , 'City 2' , 'City 3' , 'City 4' , 'City 5' ] # set the index sr.index = index_ # Print the series print (sr) |
Output :
City 1 New York City 2 Chicago City 3 Toronto City 4 Lisbon City 5 Rio dtype: object
Now we will use Series.as_matrix()
function to return the numpy array representation of the given series object.
# return numpy array representation result = sr.as_matrix() # Print the result print (result) |
Output :
['New York' 'Chicago' 'Toronto' 'Lisbon' 'Rio']
As we can see in the output, the Series.as_matrix()
function has successfully returned the numpy array representation of the given series object.
Example #2 : Use Series.as_matrix()
function to return the numpy-array representation of the given series object.
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([ 11 , 21 , 8 , 18 , 65 , 18 , 32 , 10 , 5 , 32 , None ]) # Create the Index # apply yearly frequency index_ = pd.date_range( '2010-10-09 08:45' , periods = 11 , freq = 'Y' ) # set the index sr.index = index_ # Print the series print (sr) |
Output :
2010-12-31 08:45:00 11.0 2011-12-31 08:45:00 21.0 2012-12-31 08:45:00 8.0 2013-12-31 08:45:00 18.0 2014-12-31 08:45:00 65.0 2015-12-31 08:45:00 18.0 2016-12-31 08:45:00 32.0 2017-12-31 08:45:00 10.0 2018-12-31 08:45:00 5.0 2019-12-31 08:45:00 32.0 2020-12-31 08:45:00 NaN Freq: A-DEC, dtype: float64
Now we will use Series.as_matrix()
function to return the numpy array representation of the given series object.
# return numpy array representation result = sr.as_matrix() # Print the result print (result) |
Output :
[ 11. 21. 8. 18. 65. 18. 32. 10. 5. 32. nan]
As we can see in the output, the Series.as_matrix()
function has successfully returned the numpy array representation of the given series object.