Monday, November 18, 2024
Google search engine
HomeLanguagesPsycopg2 – Insert dictionary as JSON

Psycopg2 – Insert dictionary as JSON

In this article, we are going to see how to insert a dictionary as JSON using Psycopg2 and Python.

Python dict objects can be or rather should be stored in database tables as JSON datatype. Since most of the SQL databases have a JSON datatype. This allows using these objects or key-value pairs in the front-end or in an API to process the request that is being placed from them respectively.

Setting up a PostgreSQL Database and Table:

Let us create a schema in PostgreSQL and add a table to it with at least one JSON type column. We can use the following SQL script to create the same.

In the above SQL script, we have created a schema name “Lazyroar”. A table “json_example ” is created in the schema which consists of two columns, one which is the primary key has column name “id” whereas the other column has name “json_col ” which is of type JSON.

Inserting a python dict object in PostgreSQL table using psycopg2 library:

Python




import json
import psycopg2
  
# SAVE THE DB CONFIG IN A DICT OBJECT
DATABASE_CONFIG = {
    "database": "Lazyroar",
    "user": "postgres",
    "password": "password",
    "host": "localhost",
    "port"5432,
}
  
  
def get_connection():
  
    # RETURN THE CONNECTION OBJECT
    return psycopg2.connect(
        database=DATABASE_CONFIG.get('database'),
        user=DATABASE_CONFIG.get('user'),
        password=DATABASE_CONFIG.get('password'),
        host=DATABASE_CONFIG.get('host'),
        port=DATABASE_CONFIG.get('port'),
    )
  
  
def dict_to_json(value: dict):
  
    # CONVERT DICT TO A JSON STRING AND RETURN
    return json.dumps(value)
  
  
def insert_value(id: str, json_col: str, conn):
  
    # CREATE A CURSOR USING THE CONNECTION OBJECT
    curr = conn.cursor()
  
    # EXECUTE THE INSERT QUERY
    curr.execute(f'''
        INSERT INTO
            json_table(id, json_col) 
        VALUES
            ('JSON001', '{json_col}')
    ''')
  
    # COMMIT THE ABOVE REQUESTS
    conn.commit()
  
    # CLOSE THE CONNECTION
    conn.close()
  
  
def main():
  
    # CREATE A PSYCOPG2 CONNECTION
    conn = get_connection()
  
    # CREATE A PYTHON DICT OBJECT FOR JSON COL
    dict_obj = {
        "name": "Amit Pathak",
        "skill": "Python",
        "experience": 4
    }
  
    # CONVERT DICT OBJECT TO JSON STRING
    json_obj = dict_to_json(value=dict_obj)
  
    # INSERT VALUES IN THE DATABASE TABLE
    insert_value(id='JSON001', json_col=json_obj,
                 conn=conn)
  
if __name__ == '__main__':
    main()


After running the above python file, we can head to the pgAdmin to view the following output in json_table table under public schema. You can run the following SQL script in the Query tool –

$ SELECT * FROM json_table;

Output viewed in pgAdmin

Explanation:

The above code is written in a functional format for a better representation of the underlying steps that take place in the entire process. The get_connection() function returns the connection object to the PostgreSQL table using which we can establish a connection to the database for our operations. If the connection object cannot be established, it will return False. Now, we have a python dict object created in variable name dict_obj. We will insert this dict object into the database. But, before we insert this dict object, we need to convert the object in JSON format since the database understands JSON format and not the python dict object. Python’s in-built module json is used to convert the dict object in a JSON string format using the dumps() method. Now that we have the JSON string and the connection object, we can insert the data in the database table json_table. For this purpose, we have created a function names insert_value() which takes in 3 arguments, namely, id for the value to be inserted in id column, json_col for the value that needs to be inserted in the json_col column, and the conn parameter for providing the connection object created earlier. We can see that The insert_value() function runs the usual INSERT SQL script using the connection object. The connection is closed once the data is been inserted to the table.

Using the psycopg2 Json adaptation

The following code demonstrates how psycopg2’s Json adaptation can be used instead of the standard json.dumps(). In order to pass a Python object to the database as a query argument, you can use the Json adapter imported from psycopg2.extras.

Python




import psycopg2
from psycopg2.extras import Json
  
  
# CREATE A PSYCOPG2 CONNECTION
conn = psycopg2.connect(**{
    "database" : "Lazyroar",
    "user"     : "postgres",
    "password" : "password",
    "host"     : "localhost",
    "port"     5432,
})
  
# CREATE DICT OBJECT TO BE INSERTED TO DB
dict_obj = {
    "name": "Suhas Hegde",
    "skill": "PL/SQL",
    "experience": 3
}
  
# CREATE A CURSOR USING THE CONNECTION OBJECT
curr = conn.cursor()
  
# EXECUTE THE INSERT QUERY
curr.execute(f'''
    INSERT INTO
        json_table(id, json_col) 
    VALUES
        ('JSON002', %s)
''', [Json(dict_obj)])
  
# COMMIT THE REQUESTS IN QUEUE
conn.commit()
  
# CLOSE THE CONNECTION
conn.close()


Output:

Output viewed in pgAdmin

In the above code, we are trying to insert a new JSON entry with id as JSON002. The entire process remains the same as in the earlier code except for the fact that we have used psycopg2.extras.Json instead of json.dumps.

RELATED ARTICLES

Most Popular

Recent Comments