This numpy method returns an array of given shape and type as given array, with zeros.
Syntax: numpy.zeros_like(array, dtype = None, order = 'K', subok = True)
Parameters :
array : array_like input subok : [optional, boolean]If true, then newly created array will be sub-class of array; otherwise, a base-class array order : C_contiguous or F_contiguous C-contiguous order in memory(last index varies the fastest) C order means that operating row-rise on the array will be slightly quicker FORTRAN-contiguous order in memory (first index varies the fastest). F order means that column-wise operations will be faster. dtype : [optional, float(byDefault)] Data type of returned array.
Returns :
ndarray of zeros having given shape, order and datatype.
Code 1 :
Python
# Python Programming illustrating # numpy.zeros_like method import numpy as geek array = geek.arange( 10 ).reshape( 5 , 2 ) print ( "Original array : \n" , array) b = geek.zeros_like(array, float ) print ( "\nMatrix b : \n" , b) array = geek.arange( 8 ) c = geek.zeros_like(array) print ( "\nMatrix c : \n" , c) |
Output:
Original array : [[0 1] [2 3] [4 5] [6 7] [8 9]] Matrix b : [[ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.] [ 0. 0.]] Matrix c : [0 0 0 0 0 0 0 0]
Code 2 :
Python
# Python Programming illustrating # numpy.zeros_like method import numpy as geek array = geek.arange( 10 ).reshape( 5 , 2 ) print ( "Original array : \n" , array) array = geek.arange( 4 ).reshape( 2 , 2 ) c = geek.zeros_like(array, dtype = 'float' ) print ( "\nMatrix : \n" , c) array = geek.arange( 8 ) c = geek.zeros_like(array, dtype = 'float' , order = 'C' ) print ( "\nMatrix : \n" , c) |
Output :
Original array : [[0 1] [2 3] [4 5] [6 7] [8 9]] Matrix : [[ 0. 0.] [ 0. 0.]] Matrix : [ 0. 0. 0. 0. 0. 0. 0. 0.]
References :
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.zeros_like.html#numpy.zeros_like
Note :
Also, these codes won’t run on online IDE’s. Please run them on your systems to explore the working
This article is contributed by Mohit Gupta_OMG 😀. If you like Lazyroar and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the Lazyroar main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.