Friday, November 15, 2024
Google search engine
HomeLanguagesML | Classifying Data using an Auto-encoder

ML | Classifying Data using an Auto-encoder

Prerequisites: Building an Auto-encoder

This article will demonstrate how to use an Auto-encoder to classify data. The data used below is the Credit Card transactions data to predict whether a given transaction is fraudulent or not. The data can be downloaded from here.

Step 1: Loading the required libraries




import pandas as pd 
import numpy as np
from sklearn.model_selection import train_test_split 
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import MinMaxScaler 
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
import seaborn as sns
from keras.layers import Input, Dense
from keras.models import Model, Sequential
from keras import regularizers


Step 2: Loading the data




# Changing the working location to the location of the data
cd C:\Users\Dev\Desktop\Kaggle\Credit Card Fraud
  
# Loading the dataset
df = pd.read_csv('creditcard.csv')
  
# Making the Time values appropriate for future work
df['Time'] = df['Time'].apply(lambda x : (x / 3600) % 24)
  
# Separating the normal and fraudulent transactions
fraud = df[df['Class']== 1]
normal = df[df['Class']== 0].sample(2500)
  
# Reducing the dataset because of machinery constraints
df = normal.append(fraud).reset_index(drop = True)
  
# Separating the dependent and independent variables
y = df['Class']
X = df.drop('Class', axis = 1)


Step 3: Exploring the data

a)




df.head()


b)




df.info()


c)




df.describe()


Step 4: Defining a utility function to plot the data




def tsne_plot(x, y):
      
    # Setting the plotting background
    sns.set(style ="whitegrid")
      
    tsne = TSNE(n_components = 2, random_state = 0)
      
    # Reducing the dimensionality of the data
    X_transformed = tsne.fit_transform(x)
  
    plt.figure(figsize =(12, 8))
      
    # Building the scatter plot
    plt.scatter(X_transformed[np.where(y == 0), 0], 
                X_transformed[np.where(y == 0), 1],
                marker ='o', color ='y', linewidth ='1',
                alpha = 0.8, label ='Normal')
    plt.scatter(X_transformed[np.where(y == 1), 0],
                X_transformed[np.where(y == 1), 1],
                marker ='o', color ='k', linewidth ='1',
                alpha = 0.8, label ='Fraud')
  
    # Specifying the location of the legend
    plt.legend(loc ='best')
      
    # Plotting the reduced data
    plt.show()


Step 5: Visualizing the original data




tsne_plot(X, y)


Note that the data currently is not easily separable. In the following steps, we will try to encode the data using an Auto-encoder and analyze the results.

Step 6: Cleaning the data to make it suitable for the Auto-encoder




# Scaling the data to make it suitable for the auto-encoder
X_scaled = MinMaxScaler().fit_transform(X)
X_normal_scaled = X_scaled[y == 0]
X_fraud_scaled = X_scaled[y == 1]


Step 7: Building the Auto-encoder neural network




# Building the Input Layer
input_layer = Input(shape =(X.shape[1], ))
  
# Building the Encoder network
encoded = Dense(100, activation ='tanh',
                activity_regularizer = regularizers.l1(10e-5))(input_layer)
encoded = Dense(50, activation ='tanh',
                activity_regularizer = regularizers.l1(10e-5))(encoded)
encoded = Dense(25, activation ='tanh',
                activity_regularizer = regularizers.l1(10e-5))(encoded)
encoded = Dense(12, activation ='tanh',
                activity_regularizer = regularizers.l1(10e-5))(encoded)
encoded = Dense(6, activation ='relu')(encoded)
  
# Building the Decoder network
decoded = Dense(12, activation ='tanh')(encoded)
decoded = Dense(25, activation ='tanh')(decoded)
decoded = Dense(50, activation ='tanh')(decoded)
decoded = Dense(100, activation ='tanh')(decoded)
  
# Building the Output Layer
output_layer = Dense(X.shape[1], activation ='relu')(decoded)


Step 8: Defining and Training the Auto-encoder




# Defining the parameters of the Auto-encoder network
autoencoder = Model(input_layer, output_layer)
autoencoder.compile(optimizer ="adadelta", loss ="mse")
  
# Training the Auto-encoder network
autoencoder.fit(X_normal_scaled, X_normal_scaled, 
                batch_size = 16, epochs = 10
                shuffle = True, validation_split = 0.20)


Step 9: Retaining the encoder part of the Auto-encoder to encode data




hidden_representation = Sequential()
hidden_representation.add(autoencoder.layers[0])
hidden_representation.add(autoencoder.layers[1])
hidden_representation.add(autoencoder.layers[2])
hidden_representation.add(autoencoder.layers[3])
hidden_representation.add(autoencoder.layers[4])


Step 10: Encoding the data and visualizing the encoded data




# Separating the points encoded by the Auto-encoder as normal and fraud
normal_hidden_rep = hidden_representation.predict(X_normal_scaled)
fraud_hidden_rep = hidden_representation.predict(X_fraud_scaled)
  
# Combining the encoded points into a single table 
encoded_X = np.append(normal_hidden_rep, fraud_hidden_rep, axis = 0)
y_normal = np.zeros(normal_hidden_rep.shape[0])
y_fraud = np.ones(fraud_hidden_rep.shape[0])
encoded_y = np.append(y_normal, y_fraud)
  
# Plotting the encoded points
tsne_plot(encoded_X, encoded_y)


Observe that after encoding the data, the data has come closer to being linearly separable. Thus in some cases, encoding of data can help in making the classification boundary for the data as linear. To analyze this point numerically, we will fit the Linear Logistic Regression model on the encoded data and the Support Vector Classifier on the original data.

Step 11: Splitting the original and encoded data into training and testing data




# Splitting the encoded data for linear classification
X_train_encoded, X_test_encoded, y_train_encoded, y_test_encoded = train_test_split(encoded_X, encoded_y, test_size = 0.2)
  
# Splitting the original data for non-linear classification
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)


Step 12: Building the Logistic Regression model and evaluating it’s performance




# Building the logistic regression model
lrclf = LogisticRegression()
lrclf.fit(X_train_encoded, y_train_encoded)
  
# Storing the predictions of the linear model
y_pred_lrclf = lrclf.predict(X_test_encoded)
  
# Evaluating the performance of the linear model
print('Accuracy : '+str(accuracy_score(y_test_encoded, y_pred_lrclf)))


Step 13: Building the Support Vector Classifier model and evaluating it’s performance




# Building the SVM model
svmclf = SVC()
svmclf.fit(X_train, y_train)
  
# Storing the predictions of the non-linear model
y_pred_svmclf = svmclf.predict(X_test)
  
# Evaluating the performance of the non-linear model
print('Accuracy : '+str(accuracy_score(y_test, y_pred_svmclf)))


Thus the performance metrics support the point stated above that encoding the data can sometimes be useful for making a data linearly separable as the performance of the Linear Logistic Regression model is very close to the performance of the Non-Linear Support Vector Classifier model.

RELATED ARTICLES

Most Popular

Recent Comments