Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.
matplotlib.pyplot.hist2d() Function
The hist2d() function in pyplot module of matplotlib library is used to make a 2D histogram plot.
Syntax:matplotlib.pyplot.hist2d(x, y, bins=10, range=None, density=False, weights=None, cmin=None, cmax=None, \*, data=None, \*\*kwargs)
Parameters: This method accept the following parameters that are described below:
- x, y : These parameter are the sequence of data.
- bins : This parameter is an optional parameter and it contains the integer or sequence or string.
- range : This parameter is an optional parameter and it the lower and upper range of the bins.
- density : This parameter is an optional parameter and it contains the boolean values.
- weights : This parameter is an optional parameter and it is an array of weights, of the same shape as x.
- cmin : This parameter has all bins that has count less than cmin will not be displayed.
- cmax : This parameter has all bins that has count more than cmax will not be displayed.
Returns: This returns the following:
- h :This returns the bi-dimensional histogram of samples x and y.
- xedges :This returns the bin edges along the x axis.
- yedges :This returns the bin edges along the y axis.
- image :This returns the QuadMesh.
Below examples illustrate the matplotlib.pyplot.hist2d() function in matplotlib.pyplot:
Example #1:
# Implementation of matplotlib function from matplotlib import colors from matplotlib.ticker import PercentFormatter import numpy as np import matplotlib.pyplot as plt N_points = 100000 x = np.random.randn(N_points) y = 4 * x + np.random.randn( 100000 ) + 50 plt.hist2d(x, y, bins = 100 , norm = colors.LogNorm(), cmap = "gray" ) plt.title('matplotlib.pyplot.hist2d() function \ Example\n\n', fontweight = "bold" ) plt.show() |
Output:
Example #2:
#Implementation of matplotlib function from matplotlib import colors import numpy as np from numpy.random import multivariate_normal import matplotlib.pyplot as plt result = np.vstack([ multivariate_normal([ 10 , 10 ], [[ 3 , 2 ], [ 2 , 3 ]], size = 1000000 ), multivariate_normal([ 30 , 20 ], [[ 2 , 3 ], [ 1 , 3 ]], size = 100000 ) ]) plt.hist2d(result[:, 0 ], result[:, 1 ], bins = 100 , cmap = "Greens" , norm = colors.LogNorm()) plt.title('matplotlib.pyplot.hist2d function \ Example') plt.show() plt.hist2d(result[:, 0 ], result[:, 1 ], bins = 100 , cmap = "RdYlGn_r" , norm = colors.LogNorm()) plt.show() |
Output: