Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
matplotlib.colors.to_rgb()
The matplotlib.colors.to_rgb() function is used convert c (ie, color) to an RGB color. It converts the color name into a array of RGB encoded colors. It returns an RGB tuple of three floats from 0-1.
Syntax: matplotlib.colors.to_rgb(c)
Parameters:
- c: This accepts a string that represents the name of the color. It can be an RGB or RGBA sequence or a string in any of several forms:
- a hex color string, like ‘#000FFF’
- a standard name, like ‘green’
- a letter from the set ‘rgbcmykw’
- a string representation of a float, like ‘0.4’, indicating gray on a 0-1 scale
Example 1:
Python3
import matplotlib.pyplot as plt import matplotlib.colors as mcolors # helper function to plot a color table def colortable(colors, title, colors_sort = True , emptycols = 0 ): # cell dimensions width = 212 height = 22 swatch_width = 48 margin = 12 topmargin = 40 # Sorting colors based on hue, saturation, # value and name. if colors_sort is True : to_hsv = sorted (( tuple (mcolors.rgb_to_hsv(mcolors.to_rgb(color))), name) for name, color in colors.items()) names = [name for hsv, name in to_hsv] else : names = list (colors) length_of_names = len (names) length_cols = 4 - emptycols length_rows = length_of_names / / length_cols + int (length_of_names % length_cols > 0 ) width2 = width * 4 + 2 * margin height2 = height * length_rows + margin + topmargin dpi = 72 figure, axes = plt.subplots(figsize = (width2 / dpi, height2 / dpi), dpi = dpi) figure.subplots_adjust(margin / width2, margin / height2, (width2 - margin) / width2, (height2 - topmargin) / height2) axes.set_xlim( 0 , width * 4 ) axes.set_ylim(height * (length_rows - 0.5 ), - height / 2. ) axes.yaxis.set_visible( False ) axes.xaxis.set_visible( False ) axes.set_axis_off() axes.set_title(title, fontsize = 24 , loc = "left" , pad = 10 ) for i, name in enumerate (names): rows = i % length_rows cols = i / / length_rows y = rows * height swatch_start_x = width * cols swatch_end_x = width * cols + swatch_width text_pos_x = width * cols + swatch_width + 7 axes.text(text_pos_x, y, name, fontsize = 14 , horizontalalignment = 'left' , verticalalignment = 'center' ) axes.hlines(y, swatch_start_x, swatch_end_x, color = colors[name], linewidth = 18 ) return figure colortable(mcolors.BASE_COLORS, "Base Colors" , colors_sort = False , emptycols = 1 ) colortable(mcolors.TABLEAU_COLORS, "Tableau Palette" , colors_sort = False , emptycols = 2 ) colortable(mcolors.CSS4_COLORS, "CSS Colors" ) plt.show() |
Output:
Example 2:
Python3
from matplotlib import colors import matplotlib.pyplot as plt alpha = 0.5 kwargs = dict (edgecolors = 'none' , s = 3900 , marker = 's' ) for i, color in enumerate ([ 'pink' , 'brown' , 'green' ]): rgb = colors.to_rgb(color) plt.scatter([i], [ 0 ], color = color, * * kwargs) plt.scatter([i], [ 1 ], color = color, alpha = alpha, * * kwargs) plt.scatter([i], [ 2 ], color = rgb, * * kwargs) |
Output: