In this article, we are going to see how to use the UPDATE statement in SQLAlchemy against a PostgreSQL database in python.
Creating table for demonstration:
Import necessary functions from the SQLAlchemy package. Establish connection with the PostgreSQL database using create_engine() function as shown below, create a table called books with columns book_id and book_price. Insert record into the tables using insert() and values() function as shown.
Python3
# import necessary packages from sqlalchemy.engine import result import sqlalchemy from sqlalchemy import create_engine, MetaData,\ Table, Column, Numeric, Integer, VARCHAR, update # establish connections engine = create_engine( # initialize the Metadata Object meta = MetaData(bind = engine) MetaData.reflect(meta) # create a table schema books = Table( 'books' , meta, Column( 'book_id' , Integer, primary_key = True ), Column( 'book_price' , Numeric), Column( 'genre' , VARCHAR), Column( 'book_name' , VARCHAR) ) meta.create_all(engine) # insert records into the table statement1 = books.insert().values(book_id = 1 , book_price = 12.2 , genre = 'fiction' , book_name = 'Old age' ) statement2 = books.insert().values(book_id = 2 , book_price = 13.2 , genre = 'non-fiction' , book_name = 'Saturn rings' ) statement3 = books.insert().values(book_id = 3 , book_price = 121.6 , genre = 'fiction' , book_name = 'Supernova' ) statement4 = books.insert().values(book_id = 4 , book_price = 100 , genre = 'non-fiction' , book_name = 'History of the world' ) statement5 = books.insert().values(book_id = 5 , book_price = 1112.2 , genre = 'fiction' , book_name = 'Sun city' ) # execute the insert records statement engine.execute(statement1) engine.execute(statement2) engine.execute(statement3) engine.execute(statement4) engine.execute(statement5) |
Output:
Update a row entry in SQLAlchemy
Updating a row entry has a slightly different procedure than that of a conventional SQL query which is shown below
from sqlalchemy import update upd = update(tablename) val = upd.values({"column_name":"value"}) cond = val.where(tablename.c.column_name == value)
Get the books to table from the Metadata object initialized while connecting to the database. Pass the update query to the execute() function and get all the results using fetchall() function. Use a for loop to iterate through the results.
The SQLAlchemy query shown in the below code updates the “book_name” with book_id = 3 as “2022 future ahead”. This will update one-row entry in the table. Then, we can write a conventional SQL query and use fetchall() to print the results to check whether the table is updated properly.
Python3
# Get the `books` table from the Metadata object BOOKS = meta.tables[ 'books' ] # update u = update(BOOKS) u = u.values({ "book_name" : "2022 future ahead" }) u = u.where(BOOKS.c.book_id = = 3 ) engine.execute(u) # write the SQL query inside the # text() block to fetch all records sql = text( "SELECT * from BOOKS" ) # Fetch all the records result = engine.execute(sql).fetchall() # View the records for record in result: print ( "\n" , record) |
Output: