Saturday, November 16, 2024
Google search engine
HomeLanguagesHow to Stack Multiple Pandas DataFrames?

How to Stack Multiple Pandas DataFrames?

In this article, we will see how to stack Multiple pandas dataframe. Stacking means appending the dataframe rows to the second dataframe and so on. If there are 4 dataframes, then after stacking the result will be a single dataframe with an order of dataframe1,dataframe2,dataframe3,dataframe4

Method 1: Using concat() method 

This method will stack the rows of the pandas dataframes in the order they give.

Syntax: pandas.concat([first_dataframe,second_dataframe,third_dataframe,………….,last_dataframe], ignore_index=True,axis)

Parameters:

  • dataframes are the input dataframes to be stacked
  • ignore_index is used to ignore the index values of the input dataframes
  • axis=0 specifies vertical stacking
  • axis=1 specifies horizontal stacking

Note: If the ignore_index parameter is not set to true means then it will take the given indexes which lead to the wrong stacking of the dataframes

Example 1: Python program to stack two dataframes  vertically

Python3




# import pandas module
import pandas as pd
 
# create first dataframe
data1 = pd.DataFrame({'name': ['sravan', 'bobby',
                               'ojaswi', 'rohith',
                               'gnanesh'],
                      'subjects': ['java', 'python',
                                   'php', 'java', '.NET']})
 
# create second dataframe
data2 = pd.DataFrame({'name': ['gopi', 'harsha', 'ravi',
                               'uma', 'deepika'],
                      'subjects': ['c/c++', 'html/css',
                                   'dbms', 'java', 'IOT']})
 
# stack the two DataFrames
pd.concat([data1, data2], ignore_index=True, axis=0)


Output:

Example 2: Python code to stack multiple dataframes vertically

Python3




# import pandas module
import pandas as pd
 
# create first dataframe
data1 = pd.DataFrame({'name': ['sravan', 'bobby', 'ojaswi',
                               'rohith', 'gnanesh'],
                      'subjects': ['java', 'python', 'php',
                                   'java', '.NET']})
 
# create second dataframe
data2 = pd.DataFrame({'name': ['gopi', 'harsha', 'ravi',
                               'uma', 'deepika'],
                      'subjects': ['c/c++', 'html/css',
                                   'dbms', 'java', 'IOT']})
 
# create third dataframe
data3 = pd.DataFrame(
    {'name': ['ragini', 'latha'], 'subjects': ['java', 'python']})
 
# create fourth dataframe
data4 = pd.DataFrame(
    {'name': ['gowri', 'jyothika'], 'subjects': ['java', 'IOT']})
 
# stack the four DataFrames
pd.concat([data1, data2, data3, data4], ignore_index=True,axis=0)


Output:

Example 3: Python program to stack multiple dataframes horizontally

Python3




# import pandas module
import pandas as pd
 
# create first dataframe
data1 = pd.DataFrame({'name': ['sravan', 'bobby', 'ojaswi',
                               'rohith', 'gnanesh'],
                      'subjects': ['java', 'python',
                                   'php', 'java', '.NET']})
 
# create second dataframe
data2 = pd.DataFrame({'name': ['gopi', 'harsha', 'ravi',
                               'uma', 'deepika'],
                      'subjects': ['c/c++', 'html/css',
                                   'dbms', 'java', 'IOT']})
 
# create third dataframe
data3 = pd.DataFrame(
    {'name': ['ragini', 'latha'], 'subjects': ['java', 'python']})
 
# create fourth dataframe
data4 = pd.DataFrame(
    {'name': ['gowri', 'jyothika'], 'subjects': ['java', 'IOT']})
 
# stack the four DataFrames horizontally
pd.concat([data1, data2, data3, data4], axis=1, ignore_index=True)


Output:

Method 2: Using append() method

append() method is used to append the dataframes after the given dataframe.

Syntax: first_dataframe.append([second_dataframe,…,last_dataframe],ignore_index=True)

Example: Python program to stack multiple dataframes using append() method

Python3




# import pandas module
import pandas as pd
 
# create first dataframe
data1 = pd.DataFrame({'name': ['sravan', 'bobby', 'ojaswi',
                               'rohith', 'gnanesh'],
                      'subjects': ['java', 'python', 'php',
                                   'java', '.NET']})
 
# create second dataframe
data2 = pd.DataFrame({'name': ['gopi', 'harsha', 'ravi',
                               'uma', 'deepika'],
                      'subjects': [ 'c/c++', 'html/css',
                                   'dbms', 'java', 'IOT']})
 
# create third dataframe
data3 = pd.DataFrame(
    {'name': ['ragini', 'latha'], 'subjects': ['java', 'python']})
 
# create fourth dataframe
data4 = pd.DataFrame(
    {'name': ['gowri', 'jyothika'], 'subjects': ['java', 'IOT']})
 
# stack the four DataFrames using append()
data1.append([data2, data3, data4], ignore_index=True)


Output:

RELATED ARTICLES

Most Popular

Recent Comments