Joining and merging DataFrames is that the core process to start out with data analysis and machine learning tasks. It’s one of the toolkits which each Data Analyst or Data Scientist should master because in most cases data comes from multiple sources and files. In this tutorial, you’ll how to join data frames in pandas using the merge technique. More specifically, we will practice the concatenation of DataFrames along row and column.
Getting Started
The most widely used operation related to DataFrames is the merging operation. Two DataFrames might hold different kinds of information about the same entity and they may have some same columns, so we need to combine the two data frames in pandas for better reliability code. To join these DataFrames, pandas provides various functions like join(), concat(), merge(), etc. In this section, you will practice using the merge() function of pandas. There are basically four methods of merging:
- inner join
- outer join
- right join
- left join
Inner join
From the name itself, it is clear enough that the inner join keeps rows where the merge “on” value exists in both the left and right dataframes. Now let us create two dataframes and then try merging them using inner.
Python3
import numpy as np import pandas as pd left = pd.DataFrame({ 'Sr.no' : [ '1' , '2' , '3' , '4' , '5' ], 'Name' : [ 'Rashmi' , 'Arun' , 'John' , 'Kshitu' , 'Bresha' ], 'Roll No' : [ '1' , '2' , '3' , '4' , '5' ]}) right = pd.DataFrame({ 'Sr.no' : [ '2' , '4' , '6' , '7' , '8' ], 'Gender' : [ 'F' , 'M' , 'M' , 'F' , 'F' ], 'Interest' : [ 'Writing' , 'Cricket' , 'Dancing' , 'Chess' , 'Sleeping' ]}) # Merging the dataframes pd.merge(left, right, how = 'inner' , on = 'Sr.no' ) |
Output:
Outer join
An outer join returns all the rows from the left dataframe, all the rows from the right dataframe, and matches up rows where possible, with NaNs elsewhere. But if the dataframe is complete, then we get the same output.
Python3
import numpy as np import pandas as pd left = pd.DataFrame({ 'Sr.no' : [ '1' , '2' , '3' , '4' , '5' ], 'Name' : [ 'Rashmi' , 'Arun' , 'John' , 'Kshitu' , 'Bresha' ], 'Roll No' : [ '1' , '2' , '3' , '4' , '5' ]}) right = pd.DataFrame({ 'Sr.no' : [ '2' , '4' , '6' , '7' , '8' ], 'Gender' : [ 'F' , 'M' , 'M' , 'F' , 'F' ], 'Interest' : [ 'Writing' , 'Cricket' , 'Dancing' , 'Chess' , 'Sleeping' ]}) # Merging the dataframes pd.merge(left, right, how = 'outer' , on = 'Sr.no' ) |
Output:
Left join
With a left join, all the records from the first dataframe will be displayed, irrespective of whether the keys in the first dataframe can be found in the second dataframe. Whereas, for the second dataframe, only the records with the keys in the second dataframe that can be found in the first dataframe will be displayed.
Python3
import numpy as np import pandas as pd left = pd.DataFrame({ 'Sr.no' : [ '1' , '2' , '3' , '4' , '5' ], 'Name' : [ 'Rashmi' , 'Arun' , 'John' , 'Kshitu' , 'Bresha' ], 'Roll No' : [ '1' , '2' , '3' , '4' , '5' ]}) right = pd.DataFrame({ 'Sr.no' : [ '2' , '4' , '6' , '7' , '8' ], 'Gender' : [ 'F' , 'M' , 'M' , 'F' , 'F' ], 'Interest' : [ 'Writing' , 'Cricket' , 'Dancing' , 'Chess' , 'Sleeping' ]}) # Merging the dataframes pd.merge(left, right, how = 'left' , on = 'Sr.no' ) |
Output: Note the Output Carefully.
Right join
For a right join, all the records from the second dataframe will be displayed. However, only the records with the keys in the first dataframe that can be found in the second dataframe will be displayed.
Python3
import numpy as np import pandas as pd left = pd.DataFrame({ 'Sr.no' : [ '1' , '2' , '3' , '4' , '5' ], 'Name' : [ 'Rashmi' , 'Arun' , 'John' , 'Kshitu' , 'Bresha' ], 'Roll No' : [ '1' , '2' , '3' , '4' , '5' ]}) right = pd.DataFrame({ 'Sr.no' : [ '2' , '4' , '6' , '7' , '8' ], 'Gender' : [ 'F' , 'M' , 'M' , 'F' , 'F' ], 'Interest' : [ 'Writing' , 'Cricket' , 'Dancing' , 'Chess' , 'Sleeping' ]}) # Merging the dataframes pd.merge(left, right, how = 'right' , on = 'Sr.no' ) |
Output: