Friday, November 15, 2024
Google search engine
HomeLanguagesHow to Flatten MultiIndex in Pandas?

How to Flatten MultiIndex in Pandas?

In this article, we will discuss how to flatten multiIndex in pandas.

Flatten all levels of MultiIndex:

In this method, we are going to flat all levels of the dataframe by using the reset_index() function.

Syntax:

dataframe.reset_index(inplace=True)

Note: Dataframe is the input dataframe, we have to create the dataframe MultiIndex.

Syntax:

MultiIndex.from_tuples([(tuple1),.......,(tuple n),names=[column_names])

Arguments:

  • tuples are the values
  • column names are the names of columns in each tuple value

Example:

In this example, we will create a dataframe along with multiIndex and display it in the python programming language.

Python3




import pandas as pd
 
# create DataFrame multiIndex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
                                  ('Scripting', 'python', 'sub2'),
                                  ('networks', 'computer network', 'sub3'),
                                  ('architecture', 'computer organization', 'sub4'),
                                  ('coding', 'java', 'sub5')],
                                 names=['Course', 'Subject name', 'subject id'])
 
# create dataframe with student marks
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
                     'reshma': [78, 89, 80, 98, 63],
                     'sahithi': [78, 89, 80, 98, 63]}, 
                    index=data)
 
# display
data


Output:

Now, we will flatten the index of all levels:

Python3




import pandas as pd
 
# create DataFrame multiIndex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
                                  ('Scripting', 'python', 'sub2'),
                                  ('networks', 'computer network', 'sub3'),
                                  ('architecture', 'computer organization', 'sub4'),
                                  ('coding', 'java', 'sub5')],
                                 names=['Course', 'Subject name', 'subject id'])
 
# create dataframe with student marks
 
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
                     'reshma': [78, 89, 80, 98, 63],
                     'sahithi': [78, 89, 80, 98, 63]},
                    index=data)
 
 
# flatten the index of all levels
data.reset_index(inplace=True)
 
# display
data


Output:

Flatten specific levels of MultiIndex

By using specific levels we can get by using the following syntax:

dataframe.reset_index(inplace=True,level=['level_name'])

where

  • dataframe is the input dataframe
  • level_name is the name of the multiindex level

Example:

In this example, we will create a dataframe and flatten specific levels of multiIndex and display it in the python programming language.

Python3




import pandas as pd
 
# create DataFrame multiIndex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
                                  ('Scripting', 'python', 'sub2'),
                                  ('networks', 'computer network', 'sub3'),
                                  ('architecture', 'computer organization', 'sub4'),
                                  ('coding', 'java', 'sub5')],
                                 names=['Course', 'Subject name', 'subject id'])
 
# create dataframe with student marks
 
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
                     'reshma': [78, 89, 80, 98, 63],
                     'sahithi': [78, 89, 80, 98, 63]},
                    index=data)
 
# flatten the index of level with course column
data.reset_index(inplace=True, level=['Course'])
 
# display
data


Output:

We can also specify multiple levels;

Python3




import pandas as pd
 
# create DataFrame multiIndex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
                                  ('Scripting', 'python', 'sub2'),
                                  ('networks', 'computer network', 'sub3'),
                                  ('architecture', 'computer organization', 'sub4'),
                                  ('coding', 'java', 'sub5')],
                                 names=['Course', 'Subject name', 'subject id'])
 
# create dataframe with student marks
 
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
                     'reshma': [78, 89, 80, 98, 63],
                     'sahithi': [78, 89, 80, 98, 63]},
                    index=data)
 
# flatten the index of level with course
# and subject id columns
data.reset_index(inplace=True, level=['Course', 'subject id'])
 
# display
data


Output:

Using to_records() method

This is a pandas module method used to convert multiindex dataframe into each record and display.

Syntax:

dataframe.to_records()

Example:

Python3




import pandas as pd
 
# create DataFrame multiIndex
data = pd.MultiIndex.from_tuples([('Web Programming', 'php', 'sub1'),
                                  ('Scripting', 'python', 'sub2'),
                                  ('networks', 'computer network', 'sub3'),
                                  ('architecture', 'computer organization', 'sub4'),
                                  ('coding', 'java', 'sub5')],
                                 names=['Course', 'Subject name', 'subject id'])
 
# create dataframe with student marks
 
data = pd.DataFrame({'ravi': [98, 89, 90, 88, 93],
                     'reshma': [78, 89, 80, 98, 63],
                     'sahithi': [78, 89, 80, 98, 63]},
                    index=data)
 
pd.DataFrame(data.to_records())


Output:

RELATED ARTICLES

Most Popular

Recent Comments