Pandas Series is a one-dimensional labeled array capable of holding data of any type (integer, string, float, python objects, etc.).
Let’s see how can we create a Pandas Series using different numpy
functions.
Code #1: Using numpy.linspace()
# import pandas and numpy import pandas as pd import numpy as np # series with numpy linspace() ser1 = pd.Series(np.linspace( 3 , 33 , 3 )) print (ser1) # series with numpy linspace() ser2 = pd.Series(np.linspace( 1 , 100 , 10 )) print ( "\n" , ser2) |
Output:
Code #2: Using np.random.normal() and random.rand() method.
# import pandas and numpy import pandas as pd import numpy as np # series with numpy random.normal ser3 = pd.Series(np.random.normal()) print (ser3) # series with numpy random.normal ser4 = pd.Series(np.random.normal( 0.0 , 1.0 , 5 )) print ( "\n" , ser4) # series with numpy random.rand ser5 = pd.Series(np.random.rand( 10 )) print ( "\n" , ser5) |
Output:
Code #3: Using numpy.repeat()
# import pandas and numpy import pandas as pd import numpy as np # series with numpy random.repeat ser = pd.Series(np.repeat( 0.08 , 7 )) print ( "\n" , ser) |
Output: