Suppose we want to change the order of the index of series, then we have to use the Series.reindex() Method of pandas module for performing this task.
Series, which is a 1-D labeled array capable of holding any data.
Syntax: pandas.Series(data, index, dtype, copy)
Parameters:
- data takes ndarrys, list, constants.
- index values.
- dtypes for data types.
- Copy data, default is False.
For knowing more about the pandas Series click here.
Series.reindex() Method is used for changing the data on the basis of indexes.
Syntax: Series.reindex(labels=None, index=None, columns=None, axis=None, method=None, copy=True, level=None, fill_value=nan, limit=None, tolerance=None)
For knowing more about the pandas Series.reindex() method click here.
Let’s create a series:
Python3
# import required library import pandas as pd import numpy as np # create numpy array data = np.array([ "Android dev" , "content writing" , "competitive coding" ]) #create a series total_series = pd.Series(data, index = [ 1 , 2 , 3 ]) # show the series total_series |
Output:
Example 1:
Python3
# import required library import pandas as pd import numpy as np # create numpy array data = np.array([ "Android dev" , "content writing" , "competitive coding" ]) # create a series total_series = pd.Series(data, index = [ 1 , 2 , 3 ]) # reindexing of series total_series = total_series.reindex(index = [ 3 , 2 , 1 ]) # show the series total_series |
Output:
Example 2:
Python3
# import required library import pandas as pd import numpy as np # create numpy array data = np.array([ "Android dev" , "content writing" , "competitive coding" ]) # create a series total_series = pd.Series(data, index = [ 1 , 2 , 3 ]) # reindexing of series total_series = total_series.reindex([ 2 , 3 , 1 ]) # show the series total_series |
Output: