Attribute Information about data set:
Attribute Information: -> sepal length in cm -> sepal width in cm -> petal length in cm -> petal width in cm -> class: Iris Setosa Iris Versicolour Iris Virginica Number of Instances: 150 Summary Statistics: Min Max Mean SD Class Correlation sepal length: 4.3 7.9 5.84 0.83 0.7826 sepal width: 2.0 4.4 3.05 0.43 -0.4194 petal length: 1.0 6.9 3.76 1.76 0.9490 (high!) petal width: 0.1 2.5 1.20 0.76 0.9565 (high!) Class Distribution: 33.3% for each of 3 classes.
To get the Iris Data click here.
Loading Libraries
import numpy as np import pandas as pd import matplotlib.pyplot as plt |
Loading Data
data = pd.read_csv( "Iris.csv" ) print (data.head( 10 )) |
Output:
Description
data.describe() |
Output:
Info
data.info() |
Output:
Code #1: Histogram for Sepal Length
plt.figure(figsize = ( 10 , 7 )) x = data[ "SepalLengthCm" ] plt.hist(x, bins = 20 , color = "green" ) plt.title( "Sepal Length in cm" ) plt.xlabel( "Sepal_Length_cm" ) plt.ylabel( "Count" ) |
Output:
Code #2: Histogram for Sepal Width
plt.figure(figsize = ( 10 , 7 )) x = data.SepalWidthCm plt.hist(x, bins = 20 , color = "green" ) plt.title( "Sepal Width in cm" ) plt.xlabel( "Sepal_Width_cm" ) plt.ylabel( "Count" ) plt.show() |
Output:
Code #3: Histogram for Petal Length
plt.figure(figsize = ( 10 , 7 )) x = data.PetalLengthCm plt.hist(x, bins = 20 , color = "green" ) plt.title( "Petal Length in cm" ) plt.xlabel( "Petal_Length_cm" ) plt.ylabel( "Count" ) plt.show() |
Output:
Code #4: Histogram for Petal Width
plt.figure(figsize = ( 10 , 7 )) x = data.PetalWidthCm plt.hist(x, bins = 20 , color = "green" ) plt.title( "Petal Width in cm" ) plt.xlabel( "Petal_Width_cm" ) plt.ylabel( "Count" ) plt.show() |
Output:
Code #5: Data preparation for Box Plot
# removing Id column new_data = data[[ "SepalLengthCm" , "SepalWidthCm" , "PetalLengthCm" , "PetalWidthCm" ]] print (new_data.head()) |
Output :
Code #6: Box Plot for Iris Data
plt.figure(figsize = ( 10 , 7 )) new_data.boxplot() |
Output :