Saturday, November 16, 2024
Google search engine
HomeLanguagesPython – Rayleigh Distribution in Statistics

Python – Rayleigh Distribution in Statistics

scipy.stats.rayleigh() is a Rayleigh continuous random variable. As an instance of the rv_continuous class, the rayleigh object inherits from it a collection of generic methods and completes them with details specific to this particular distribution.  

Parameters: 

  • q : lower and upper tail probability 
  • x : quantiles 
  • loc : [optional]location parameter. Default = 0 
  • scale : [optional]scale parameter. Default = 1 
  • size : [tuple of ints, optional] shape or random variates. 
  • moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’). 
  • Results : Rayleigh continuous random variable

Code #1 : Creating Rayleigh continuous random variable 

Python3




# importing library
 
from scipy.stats import rayleigh
   
numargs = rayleigh .numargs
a, b = 4.32, 3.18
rv = rayleigh (a, b)
   
print ("RV : \n", rv)


Output :

RV : 
 scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D843A9C8

Code #2 : Rayleigh continuous variates and probability distribution 

Python3




import numpy as np
quantile = np.arange (0.01, 1, 0.1)
 
# Random Variates
R = rayleigh.rvs(a, b)
print ("Random Variates : \n", R)
 
# PDF
R = rayleigh.pdf(a, b, quantile)
print ("\nProbability Distribution : \n", R)


Output :

Random Variates : 
 6.581597763121607

Probability Distribution : 
 [0.00000000e+00 4.48155819e-22 1.03102695e-05 1.37280742e-02
 1.42084729e-01 3.60395757e-01 5.34360887e-01 6.23116939e-01
 6.45372583e-01 6.28111099e-01]

Code #3: Graphical Representation. 

Python3




import numpy as np
import matplotlib.pyplot as plt
    
distribution = np.linspace(0, np.minimum(rv.dist.b, 3))
print("Distribution : \n", distribution)
    
plot = plt.plot(distribution, rv.pdf(distribution))


Output :

Distribution : 
 [0.         0.04081633 0.08163265 0.12244898 0.16326531 0.20408163
 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959
 0.48979592 0.53061224 0.57142857 0.6122449  0.65306122 0.69387755
 0.73469388 0.7755102  0.81632653 0.85714286 0.89795918 0.93877551
 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347
 1.2244898  1.26530612 1.30612245 1.34693878 1.3877551  1.42857143
 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939
 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735
 1.95918367 2.        ]
  

 

Code #4: Varying Positional Arguments 

Python3




import matplotlib.pyplot as plt
import numpy as np
    
x = np.linspace(0, 5, 100)
    
# Varying positional arguments
y1 = rayleigh .pdf(x, 1, 3, 5)
y2 = rayleigh .pdf(x, 1, 4, 4)
plt.plot(x, y1, "*", x, y2, "r--")


Output:

 

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments