scipy.stats.rayleigh() is a Rayleigh continuous random variable. As an instance of the rv_continuous class, the rayleigh object inherits from it a collection of generic methods and completes them with details specific to this particular distribution.
Parameters:
- q : lower and upper tail probability
- x : quantiles
- loc : [optional]location parameter. Default = 0
- scale : [optional]scale parameter. Default = 1
- size : [tuple of ints, optional] shape or random variates.
- moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).
- Results : Rayleigh continuous random variable
Code #1 : Creating Rayleigh continuous random variable
Python3
# importing library from scipy.stats import rayleigh numargs = rayleigh .numargs a, b = 4.32 , 3.18 rv = rayleigh (a, b) print ("RV : \n", rv) |
Output :
RV : scipy.stats._distn_infrastructure.rv_frozen object at 0x000002A9D843A9C8
Code #2 : Rayleigh continuous variates and probability distribution
Python3
import numpy as np quantile = np.arange ( 0.01 , 1 , 0.1 ) # Random Variates R = rayleigh.rvs(a, b) print ("Random Variates : \n", R) # PDF R = rayleigh.pdf(a, b, quantile) print ("\nProbability Distribution : \n", R) |
Output :
Random Variates : 6.581597763121607 Probability Distribution : [0.00000000e+00 4.48155819e-22 1.03102695e-05 1.37280742e-02 1.42084729e-01 3.60395757e-01 5.34360887e-01 6.23116939e-01 6.45372583e-01 6.28111099e-01]
Code #3: Graphical Representation.
Python3
import numpy as np import matplotlib.pyplot as plt distribution = np.linspace( 0 , np.minimum(rv.dist.b, 3 )) print ("Distribution : \n", distribution) plot = plt.plot(distribution, rv.pdf(distribution)) |
Output :
Distribution : [0. 0.04081633 0.08163265 0.12244898 0.16326531 0.20408163 0.24489796 0.28571429 0.32653061 0.36734694 0.40816327 0.44897959 0.48979592 0.53061224 0.57142857 0.6122449 0.65306122 0.69387755 0.73469388 0.7755102 0.81632653 0.85714286 0.89795918 0.93877551 0.97959184 1.02040816 1.06122449 1.10204082 1.14285714 1.18367347 1.2244898 1.26530612 1.30612245 1.34693878 1.3877551 1.42857143 1.46938776 1.51020408 1.55102041 1.59183673 1.63265306 1.67346939 1.71428571 1.75510204 1.79591837 1.83673469 1.87755102 1.91836735 1.95918367 2. ]
Code #4: Varying Positional Arguments
Python3
import matplotlib.pyplot as plt import numpy as np x = np.linspace( 0 , 5 , 100 ) # Varying positional arguments y1 = rayleigh .pdf(x, 1 , 3 , 5 ) y2 = rayleigh .pdf(x, 1 , 4 , 4 ) plt.plot(x, y1, " * ", x, y2, "r - - ") |
Output: