Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.
Pandas Series.last_valid_index()
function return index for the last non-NA/null value in the given series object.
Syntax: Series.last_valid_index()
Parameter : None
Returns : scalar
Example #1: Use Series.last_valid_index()
function to return the last valid index of the given series object.
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([ 'New York' , 'Chicago' , 'Toronto' , None , 'Rio' ]) # Create the Index index_ = [ 'City 1' , 'City 2' , 'City 3' , 'City 4' , 'City 5' ] # set the index sr.index = index_ # Print the series print (sr) |
Output :
Now we will use Series.last_valid_index()
function to return the last valid index of the given series object.
# return the last valid index result = sr.last_valid_index() # Print the result print (result) |
Output :
As we can see in the output, the Series.last_valid_index()
function has returned the last valid index in the given series object.
Example #2: Use Series.last_valid_index()
function to return the last valid index of the given series object.
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([ 19.5 , 16.8 , None , 22.78 , 16.8 , 20.124 , None , None , None ]) # Print the series print (sr) |
Output :
Now we will use Series.last_valid_index()
function to return the last valid index of the given series object.
# return the last valid index result = sr.last_valid_index() # Print the result print (result) |
Output :
As we can see in the output, the Series.last_valid_index()
function has returned the last valid index in the given series object.