Pandas DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. It can be thought of as a dict-like container for Series objects. This is the primary data structure of the Pandas.
Pandas DataFrame.blocks
attribute is synonym for as_blocks()
function. It basically convert the frame to a dict of dtype -> Constructor Types that each has a homogeneous dtype.
Syntax: DataFrame.blocks
Parameter : None
Returns : dict
Example #1: Use DataFrame.blocks
attribute to return a dictionary containing the data in blocks of separate data types.
# importing pandas as pd import pandas as pd # Creating the DataFrame df = pd.DataFrame({ 'Weight' :[ 45 , 88 , 56 , 15 , 71 ], 'Name' :[ 'Sam' , 'Andrea' , 'Alex' , 'Robin' , 'Kia' ], 'Age' :[ 14 , 25 , 55 , 8 , 21 ]}) # Create the index index_ = [ 'Row_1' , 'Row_2' , 'Row_3' , 'Row_4' , 'Row_5' ] # Set the index df.index = index_ # Print the DataFrame print (df) |
Output :
Now we will use DataFrame.blocks
attribute to return the block representation of the given dataframe.
# return a dictionary result = df.blocks # Print the result print (result) |
Output :
As we can see in the output, the DataFrame.blocks
attribute has successfully returned a dictionary containing the data of the dataframe. Homogeneous columns are places in the same block.
Example #2: Use DataFrame.blocks
attribute to return a dictionary containing the data in blocks of separate data types.
# importing pandas as pd import pandas as pd # Creating the DataFrame df = pd.DataFrame({ "A" :[ 12 , 4 , 5 , None , 1 ], "B" :[ 7 , 2 , 54 , 3 , None ], "C" :[ 20 , 16 , 11 , 3 , 8 ], "D" :[ 14 , 3 , None , 2 , 6 ]}) # Create the index index_ = [ 'Row_1' , 'Row_2' , 'Row_3' , 'Row_4' , 'Row_5' ] # Set the index df.index = index_ # Print the DataFrame print (df) |
Output :
Now we will use DataFrame.blocks
attribute to return the block representation of the given dataframe.
# return a dictionary result = df.blocks # Print the result print (result) |
Output :
As we can see in the output, the DataFrame.blocks
attribute has successfully returned a dictionary containing the data of the dataframe. Homogeneous columns are places in the same block.