Monday, November 18, 2024
Google search engine
HomeLanguagesLoad NumPy data in Tensorflow

Load NumPy data in Tensorflow

In this article, we will be looking at the approach to load Numpy data in Tensorflow in the Python programming language.

Using tf.data.Dataset.from_tensor_slices() function

Under this approach, we are loading a Numpy array with the use of tf.data.Dataset.from_tensor_slices() method, we can get the slices of an array in the form of objects by using tf.data.Dataset.from_tensor_slices() method from the TensorFlow module.

Syntax : tf.data.Dataset.from_tensor_slices(list)

Return : Return the objects of sliced elements.

Example 1:

In this example, we are using tf.data.Dataset.from_tensor_slices() method, to get the slices of the 2D-array and then load this to a variable gfg.

Python3




# import modules
import tensorflow as tf
import numpy as np
  
# Creating data
arr = np.array([[1, 2, 3, 4],
                [4, 5, 6, 0],
                [2, 0, 7, 8],
                [3, 7, 4, 2]])
  
# using tf.data.Dataset.from_tensor_slices() 
# method
gfg = tf.data.Dataset.from_tensor_slices(arr)
  
for i in gfg:
    print(i.numpy())


Output:

[1 2 3 4]
[4 5 6 0]
[2 0 7 8]
[3 7 4 2]

Example 2:

In this example, we will load the NumPy list of the variable gfg using the tf.data.Dataset.from_tensor_slices() function from the TensorFlow library in the Python programming language.

Python3




# import modules
import tensorflow as tf
import numpy as np
  
# Creating data
list = [[5, 10], [3, 6], [1, 2], [5, 0]]
  
# using tf.data.Dataset.from_tensor_slices()
# method
gfg = tf.data.Dataset.from_tensor_slices(list)
  
for i in gfg:
    print(i.numpy())


Output:

[ 5 10]
[3 6]
[1 2]
[5 0]

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments