In this article, we are going to learn how to duplicate a row N times in a PySpark DataFrame.
Method 1: Repeating rows based on column value
In this method, we will first make a PySpark DataFrame using createDataFrame(). In our example, the column “Y” has a numerical value that can only be used here to repeat rows. We will use withColumn() function here and its parameter expr will be explained below.
Syntax :
DataFrame.withColumn(colName,col)
Parameters :
- colName : str name of the new column
- col : Column(DataType) a column expression of the new column
The colName here is “Y”. The col expression we will be using here is :
explode(array_repeat(Y,int(Y)))
- array_repeat is an expression that creates an array containing a column repeated count times.
- explode is an expression that returns a new row for each element in the given array or map.
Example:
Python
# Importing PySpark and Pandas import pyspark from pyspark.sql import SparkSession from pyspark.sql.functions import col,expr # Session Creation Spark_Session = SparkSession.builder.appName( 'Spark Session' ).getOrCreate() # Accepting n from the user. n = int ( input ( 'Enter n : ' )) # Data filled in our DataFrame rows = [[ 'a' , 1 , '@' ], [ 'b' , 3 , '_' ], [ 'c' , 2 , '!' ], [ 'd' , 6 , '(' ]] # Columns of our DataFrame columns = [ 'X' , 'Y' , 'Z' ] # DataFrame is created df = Spark_Session.createDataFrame(rows,columns) # Printing the DataFrame df.show() # Creating a new DataFrame with a # expression using functions new_df = df.withColumn( "Y" , expr( "explode(array_repeat(Y,int(Y)))" )) # Printing the new DataFrame new_df.show() |
Output :
Method 2: Using collect() and appending a random row in the list
In this method, we will first accept N from the user. We will then create a PySpark DataFrame using createDataFrame(). We can then store the list of Row objects found using collect() method. The Syntax needed is :
DataFrame.collect()
in a variable. We will then use the Python List append() function to append a row object in the list which will be done in a loop of N iterations. Finally, the list of Row objects will be converted to a PySpark DataFrame.
Example:
Python
# Importing PySpark and random import pyspark from pyspark.sql import SparkSession import random # Session Creation Spark_Session = SparkSession.builder.appName( 'Spark Session' ).getOrCreate() # Accepting n from the user. n = int ( input ( 'Enter n : ' )) # Data filled in our DataFrame rows = [[ 'a' , 1 , '@' ], [ 'b' , 3 , '_' ], [ 'c' , 2 , '!' ], [ 'd' , 6 , '(' ]] # Columns of our DataFrame columns = [ 'X' , 'Y' , 'Z' ] # DataFrame is created df = Spark_Session.createDataFrame(rows,columns) # Showing the DataFrame df.show() # Creating a list of rows and # getting a random row from the list row_list = df.collect() repeated = random.choice(row_list) # adding a row object to the list # n times for _ in range (n): row_list.append(repeated) # Final DataFrame df = Spark_Session.createDataFrame(row_list) # Result df.show() |
Output :
Method 3: Convert the PySpark DataFrame to a Pandas DataFrame
In this method, we will first accept N from the user. We will then create a PySpark DataFrame using createDataFrame(). We will then be converting a PySpark DataFrame to a Pandas DataFrame using toPandas(). We will then get the first row of the DataFrame using slicing with the Syntax DataFrame[:1]. We will then use append() function to stick the row to the Pandas DataFrame using a loop. They syntax of append() is :
Syntax : DataFrame.append(other, ignore_index=False, verify_integrity=False, sort=False)
Parameters :
- other : DataFrame/Numpy Series The data to be appended
- ignore_index : bool, default : False Check if the DataFrame of the new DataFrame depends on the older DataFrame
- verify_integrity : bool, default : False Takes care of duplicate values
- sort : bool, default : False Sort columns based on the value
Example:
Python
# Importing PySpark and Pandas import pyspark from pyspark.sql import SparkSession import pandas as pd # Session Creation Spark_Session = SparkSession.builder.appName( 'Spark Session' ).getOrCreate() # Accepting n from the user. n = int ( input ( 'Enter n : ' )) # Data filled in our DataFrame rows = [[ 'a' , 1 , '@' ], [ 'b' , 3 , '_' ], [ 'c' , 2 , '!' ], [ 'd' , 6 , '(' ]] # Columns of our DataFrame columns = [ 'X' , 'Y' , 'Z' ] # DataFrame is created df = Spark_Session.createDataFrame(rows,columns) # Converting to a Pandas DataFrame df_pandas = df.toPandas() # The initial DataFrame print ( 'First DF' ) print (df_pandas) # the first row first_row = df_pandas[: 1 ] # Appending the row n times for _ in range (n): df_pandas = df_pandas.append(first_row,ignore_index = True ) # Final DataFrame print ( 'New DF' ) print (df_pandas) |
Output :