In this article, Let’s see how to add one polynomial to another. Two polynomials are given as input and the result is the addition of two polynomials.
- The polynomial p(x) = C3 x2 + C2 x + C1 is represented in NumPy as : ( C1, C2, C3 ) { the coefficients (constants)}.
- Let take two polynomials p(x) and q(x) then add these to get r(x) = p(x) + q(x) as a result of addition of two input polynomials.
If p(x) = A3 x2 + A2 x + A1 and q(x) = B3 x2 + B2 x + B1 then result is r(x) = p(x) + q(x) i.e; r(x) = (A3 + B3) x2 + (A2 + B2) x + (A1 + B1) and output is ( (A1 + B1), (A2 + B2), (A3 + B3) )
Below is the implementation with some examples :
Example 1: simple_use
Python3
# importing package import numpy # define the polynomials # p(x) = 5(x**2) + (-2)x +5 px = ( 5 , - 2 , 5 ) # q(x) = 2(x**2) + (-5)x +2 qx = ( 2 , - 5 , 2 ) # add the polynomials rx = numpy.polynomial.polynomial.polyadd(px,qx) # print the resultant polynomial print (rx) |
Output :
[ 7. -7. 7.]
Example 2: #add_with_decimals
Python3
# importing package import numpy # define the polynomials # p(x) = 2.2 px = ( 0 , 0 , 2.2 ) # q(x) = 9.8(x**2) + 4 qx = ( 9.8 , 0 , 4 ) # add the polynomials rx = numpy.polynomial.polynomial.polyadd(px,qx) # print the resultant polynomial print (rx) |
Output :
[ 9.8 0. 6.2]
Example 3: eval_then_add
Python3
# importing package import numpy # define the polynomials # p(x) = (5/3)x px = ( 0 , 5 / 3 , 0 ) # q(x) = (-7/4)(x**2) + (9/5) qx = ( - 7 / 4 , 0 , 9 / 5 ) # add the polynomials rx = numpy.polynomial.polynomial.polyadd(px,qx) # print the resultant polynomial print (rx) |
Output :
[-1.75 1.66666667 1.8 ]