The Hanning window is a taper formed by using a weighted cosine.
Syntax: numpy.hamming(M) Parameters: M : Number of points in the output window. Returns: AN array
The window, with the maximum value normalized to one (the value one appears only if M is odd).
Code #1:
import numpy as np print (np.hanning( 12 )) |
Output:
[ 0. 0.07937323 0.29229249 0.57115742 0.82743037 0.97974649 0.97974649 0.82743037 0.57115742 0.29229249 0.07937323 0. ]
Code #2: Plotting the window and its frequency response (requires SciPy and matplotlib).
import numpy as np import matplotlib.pyplot as plt from numpy.fft import fft, fftshift window = np.hanning( 51 ) plt.plot(window) plt.title( "Hann window" ) plt.ylabel( "Amplitude"" ) plt.xlabel( "Sample" ) plt.show() |
Output:
For frequency:
import numpy as np import matplotlib.pyplot as plt from numpy.fft import fft, fftshift window = np.hanning( 51 ) plt.figure() A = fft(window, 2048 ) / 25.5 mag = np. abs (fftshift(A)) freq = np.linspace( - 0.5 , 0.5 , len (A)) response = 20 * np.log10(mag) response = np.clip(response, - 100 , 100 ) plt.plot(freq, response) plt.title( "Frequency response of Hanning window" ) plt.ylabel( "Magnitude [dB]" ) plt.xlabel( "Normalized frequency [cycles per sample]" ) plt.axis( "tight" ) plt.show() |
Output: