The Hamming window is a taper formed by using a weighted cosine
Parameters(numpy.hamming(M)): M : int Number of points in the output window. If zero or less, an empty array is returned. Returns: out : array
The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd).
Example:
import numpy as np print (np.hamming( 12 )) |
Output:
[ 0.08 0.15302337 0.34890909 0.60546483 0.84123594 0.98136677 0.98136677 0.84123594 0.60546483 0.34890909 0.15302337 0.08 ]
Plotting the window and its frequency response (requires SciPy and matplotlib):
For Window:
import numpy as np import matplotlib.pyplot as plt from numpy.fft import fft, fftshift window = np.hamming( 51 ) plt.plot(window) plt.title( "Hamming window" ) plt.ylabel( "Amplitude" ) plt.xlabel( "Sample" ) plt.show() |
Output:
For frequency:
import numpy as np import matplotlib.pyplot as plt from numpy.fft import fft, fftshift window = np.hamming( 51 ) plt.figure() A = fft(window, 2048 ) / 25.5 mag = np. abs (fftshift(A)) freq = np.linspace( - 0.5 , 0.5 , len (A)) response = 20 * np.log10(mag) response = np.clip(response, - 100 , 100 ) plt.plot(freq, response) plt.title( "Frequency response of Hamming window" ) plt.ylabel( "Magnitude [dB]" ) plt.xlabel( "Normalized frequency [cycles per sample]" ) plt.axis( 'tight' ) plt.show() |
Output: