Python dictionary is a versatile data structure that allows a lot of operations to be done without any hassle. Calculating the standard deviation is shown below.
Example #1: Using numpy.std()
First, we create a dictionary. Then we store all the values in a list by iterating over it. After this using the NumPy we calculate the standard deviation of the list.
Python3
# importing numpy import numpy as np # creating our test dictionary dicti = { 'a' : 20 , 'b' : 32 , 'c' : 12 , 'd' : 93 , 'e' : 84 } # declaring an empty list listr = [] # appending all the values in the list for value in dicti.values(): listr.append(value) # calculating standard deviation using np.std std = np.std(listr) # printing results print (std) |
Output:
33.63569532505609
Example #2: Using list comprehension
First, we create a list of values from the dictionary using a loop. Then we calculate mean, variance and then the standard deviation.
Python3
# creating our test dictionary dicti = { 'a' : 20 , 'b' : 32 , 'c' : 12 , 'd' : 93 , 'e' : 84 } # declaring an empty list listr = [] # appending all the values in the list for value in dicti.values(): listr.append(value) # Standard deviation of list # Using sum() + list comprehension mean = sum (listr) / len (listr) variance = sum ([((x - mean) * * 2 ) for x in listr]) / len (listr) res = variance * * 0.5 print (res) |
Output:
33.63569532505609
Example #3: Using pstdev()
Pythons inbuilt statistics library provides a function to compute the standard deviation of a given list.
Python3
# importing the module import statistics # creating the test dictionary dicti = { 'a' : 20 , 'b' : 32 , 'c' : 12 , 'd' : 93 , 'e' : 84 } # declaring an empty list listr = [] # appending all the values in the list for value in dicti.values(): listr.append(value) # Standard deviation of list # Using pstdev() res = statistics.pstdev(listr) print (res) |
Output:
33.63569532505609