In this article, we will discuss how to rename columns for PySpark dataframe aggregates using Pyspark.
Dataframe in use:
In PySpark, groupBy() is used to collect the identical data into groups on the PySpark DataFrame and perform aggregate functions on the grouped data. These are available in functions module:
Method 1: Using alias()
We can use this method to change the column name which is aggregated.
Syntax:
dataframe.groupBy(‘column_name_group’).agg(aggregate_function(‘column_name’).alias(“new_column_name”))
where,
- dataframe is the input dataframe
- column_name_group is the grouped column
- aggregate_function is the function from the above functions
- column_name is the column where aggregation is performed
- new_column_name is the new name for column_name
Example 1: Aggregating DEPT column with sum() and avg() by changing FEE column name to Total Fee
Python3
# importing module import pyspark # importing sparksession from pyspark.sql module from pyspark.sql import SparkSession #import functions from pyspark.sql import functions # creating sparksession and giving an app name spark = SparkSession.builder.appName( 'sparkdf' ).getOrCreate() # list of student data data = [[ "1" , "sravan" , "IT" , 45000 ], [ "2" , "ojaswi" , "CS" , 85000 ], [ "3" , "rohith" , "CS" , 41000 ], [ "4" , "sridevi" , "IT" , 56000 ], [ "5" , "bobby" , "ECE" , 45000 ], [ "6" , "gayatri" , "ECE" , 49000 ], [ "7" , "gnanesh" , "CS" , 45000 ], [ "8" , "bhanu" , "Mech" , 21000 ] ] # specify column names columns = [ 'ID' , 'NAME' , 'DEPT' , 'FEE' ] # creating a dataframe from the lists of data dataframe = spark.createDataFrame(data, columns) # aggregating DEPT column with sum() and avg() # by changing FEE column name to Total Fee dataframe.groupBy( 'DEPT' ).agg(functions. sum ( 'FEE' ).alias( "Total Fee" ), functions.avg( 'FEE' ).alias( "Average Fee" )).show() |
Output:
Example 2 : Aggregating DEPT column with min(),count(),mean() and max() by changing FEE column name to Total Fee
Python3
# importing module import pyspark # importing sparksession from pyspark.sql module from pyspark.sql import SparkSession #import functions from pyspark.sql import functions # creating sparksession and giving an app name spark = SparkSession.builder.appName( 'sparkdf' ).getOrCreate() # list of student data data = [[ "1" , "sravan" , "IT" , 45000 ], [ "2" , "ojaswi" , "CS" , 85000 ], [ "3" , "rohith" , "CS" , 41000 ], [ "4" , "sridevi" , "IT" , 56000 ], [ "5" , "bobby" , "ECE" , 45000 ], [ "6" , "gayatri" , "ECE" , 49000 ], [ "7" , "gnanesh" , "CS" , 45000 ], [ "8" , "bhanu" , "Mech" , 21000 ] ] # specify column names columns = [ 'ID' , 'NAME' , 'DEPT' , 'FEE' ] # creating a dataframe from the lists of data dataframe = spark.createDataFrame(data, columns) # aggregating DEPT column with min(),count(),mean() # and max() by changing FEE column name to Total Fee dataframe.groupBy( 'DEPT' ).agg(functions. min ( 'FEE' ).alias( "Minimum Fee" ), functions. max ( 'FEE' ).alias( "Maximum Fee" ), functions.count( 'FEE' ).alias( "No of Fee" ), functions.mean( 'FEE' ).alias( "Average Fee" )).show() |
Output:
Method 2: Using withColumnRenamed()
This takes a resultant aggregated column name and renames this column. After aggregation, It will return the column names as aggregate_operation(old_column)
so using this we can replace this with our new column
Syntax:
dataframe.groupBy(“column_name_group”).agg({“column_name”:”aggregate_operation”}).withColumnRenamed(“aggregate_operation(column_name)”, “new_column_name”)
Example: Aggregating DEPT column with sum() FEE and rename to Total Fee
Python3
# importing module import pyspark # importing sparksession from pyspark.sql module from pyspark.sql import SparkSession #import functions from pyspark.sql import functions # creating sparksession and giving an app name spark = SparkSession.builder.appName( 'sparkdf' ).getOrCreate() # list of student data data = [[ "1" , "sravan" , "IT" , 45000 ], [ "2" , "ojaswi" , "CS" , 85000 ], [ "3" , "rohith" , "CS" , 41000 ], [ "4" , "sridevi" , "IT" , 56000 ], [ "5" , "bobby" , "ECE" , 45000 ], [ "6" , "gayatri" , "ECE" , 49000 ], [ "7" , "gnanesh" , "CS" , 45000 ], [ "8" , "bhanu" , "Mech" , 21000 ] ] # specify column names columns = [ 'ID' , 'NAME' , 'DEPT' , 'FEE' ] # creating a dataframe from the lists of data dataframe = spark.createDataFrame(data, columns) # aggregating DEPT column with sum() FEE and rename to Total Fee dataframe.groupBy( "DEPT" ).agg({ "FEE" : "sum" }).withColumnRenamed( "sum(FEE)" , "Total Fee" ).show() |
Output: