Sunday, November 17, 2024
Google search engine
HomeLanguagesPython | Tuple XOR operation

Python | Tuple XOR operation

Sometimes, while working with records, we can have a problem in which we may need to perform mathematical bitwise XOR operation across tuples. This problem can occur in day-day programming. Let’s discuss certain ways in which this task can be performed. 

Method #1: Using zip() + generator expression The combination of above functions can be used to perform this task. In this, we perform the task of XOR using generator expression and mapping index of each tuple is done by zip(). 

Python3




# Python3 code to demonstrate working of
# Tuple XOR operation
# using zip() + generator expression
 
# initialize tuples
test_tup1 = (10, 4, 6, 9)
test_tup2 = (5, 2, 3, 3)
 
# printing original tuples
print("The original tuple 1 : " + str(test_tup1))
print("The original tuple 2 : " + str(test_tup2))
 
# Tuple XOR operation
# using zip() + generator expression
res = tuple(ele1 ^ ele2 for ele1, ele2 in zip(test_tup1, test_tup2))
 
# printing result
print("The XOR tuple : " + str(res))


Output : 

The original tuple 1 : (10, 4, 6, 9)
The original tuple 2 : (5, 2, 3, 3)
The XOR tuple : (15, 6, 5, 10)

Time complexity: O(n), where n is the length of the tuples. The XOR operation between two elements takes O(1) time and is performed n times, so the overall time complexity is O(n).
Auxiliary Space: O(n), where n is the length of the result tuple. The generator expression creates a new tuple with the XORed elements, so the space complexity is proportional to the size of the result tuple.

Method #2: Using map() + xor The combination of above functionalities can also perform this task. In this, we perform the task of extending logic of XOR using xor and mapping is done by map(). 

Python3




# Python3 code to demonstrate working of
# Tuple XOR operation
# using map() + xor
from operator import xor
 
# initialize tuples
test_tup1 = (10, 4, 6, 9)
test_tup2 = (5, 2, 3, 3)
 
# printing original tuples
print("The original tuple 1 : " + str(test_tup1))
print("The original tuple 2 : " + str(test_tup2))
 
# Tuple XOR operation
# using map() + xor
res = tuple(map(xor, test_tup1, test_tup2))
 
# printing result
print("The XOR tuple : " + str(res))


Output : 

The original tuple 1 : (10, 4, 6, 9)
The original tuple 2 : (5, 2, 3, 3)
The XOR tuple : (15, 6, 5, 10)

Time complexity: O(n), where n is the length of the tuples. This is because the map() function and the xor operator iterate through the tuples once.
Auxiliary space: O(n), where n is the length of the tuples. This is because the tuple created by the map() function is of the same length as the input tuples.

Method #3 : Using numpy

Note: install numpy module using command “pip install numpy”

Python3




# Python3 code to demonstrate working of
# Tuple XOR operation
# using numpy
import numpy as np
   
# initialize tuples
test_tup1 = (10, 4, 6, 9)
test_tup2 = (5, 2, 3, 3)
   
# printing original tuples
print("The original tuple 1 : " + str(test_tup1))
print("The original tuple 2 : " + str(test_tup2))
   
# Tuple XOR operation
# using numpy
res = np.bitwise_xor(test_tup1,test_tup2)
   
# printing result
print("The XOR tuple : " + str(tuple(res)))


Output:

The original tuple 1 : (10, 4, 6, 9)
The original tuple 2 : (5, 2, 3, 3)
The XOR tuple : (15, 6, 5, 10)
 

Time complexity: O(n)
Auxiliary Space: O(n)

Method #4 : Using for loops

Python3




# Python3 code to demonstrate working of
# Tuple XOR operation
 
# initialize tuples
test_tup1 = (10, 4, 6, 9)
test_tup2 = (5, 2, 3, 3)
 
# printing original tuples
print("The original tuple 1 : " + str(test_tup1))
print("The original tuple 2 : " + str(test_tup2))
 
# Tuple XOR operation
res=[]
for i in range(0,len(test_tup1)):
    res.append(test_tup1[i]^test_tup2[i])
res=tuple(res)
# printing result
print("The XOR tuple : " + str(res))


Output

The original tuple 1 : (10, 4, 6, 9)
The original tuple 2 : (5, 2, 3, 3)
The XOR tuple : (15, 6, 5, 10)

Time complexity: O(n)
Auxiliary Space: O(n)

Method 5: Using List Comprehension

Use list comprehension to iterate over the elements of both tuples and perform the XOR operation. The resulting list can then be converted to a tuple.

Below is the implementation of the above idea:

Python3




# initialize tuples
test_tup1 = (10, 4, 6, 9)
test_tup2 = (5, 2, 3, 3)
 
# perform XOR operation using list comprehension
res = tuple([test_tup1[i] ^ test_tup2[i] for i in range(len(test_tup1))])
 
# printing original tuples
print("The original tuple 1 : " + str(test_tup1))
print("The original tuple 2 : " + str(test_tup2))
 
# print the result
print("The XOR tuple : " + str(res))


Output

The original tuple 1 : (10, 4, 6, 9)
The original tuple 2 : (5, 2, 3, 3)
The XOR tuple : (15, 6, 5, 10)

Time complexity: O(n), where n is the length of the tuples test_tup1 and test_tup2.
Auxiliary Space: O(n)

Method #6: Using itertools.starmap() + operator.xor()

The itertools.starmap() function applies a function to a sequence of argument tuples, and operator.xor() function returns the bitwise XOR of two integers.

Python3




import operator
import itertools
 
test_tup1 = (10, 4, 6, 9)
test_tup2 = (5, 2, 3, 3)
 
# Tuple XOR operation using itertools.starmap() and operator.xor()
res = tuple(itertools.starmap(operator.xor, zip(test_tup1, test_tup2)))
 
# printing result
print("The XOR tuple : " + str(res))


Output

The XOR tuple : (15, 6, 5, 10)

Time complexity: O(n), where n is the length of the tuples test_tup1 and test_tup2.
Auxiliary Space: O(n)

Method #7:Using the pandas module

  • Import the pandas module and initialize two tuples.
  • Create two data frames using the pandas.DataFrame() function, one for each tuple.
  • Use the pandas.DataFrame.diff() function to calculate the difference between the two data frames.
  • Use the pandas.DataFrame.gt() function to create a boolean mask indicating where the values in the first data frame are greater than those in the second data frame.
  • Use the pandas.DataFrame.where() function to apply the boolean mask to the results of step 3.
  • Use the pandas.DataFrame.fillna() function to fill any NaN values in the resulting data frame with False.
  • Convert the resulting data frame to a list of lists using the pandas.DataFrame.values.tolist() function.

Python3




import pandas as pd
 
# initialize tuples
test_tup1 = (10, 4, 6, 9)
test_tup2 = (5, 2, 3, 3)
   
# printing original tuples
print("The original tuple 1 : " + str(test_tup1))
print("The original tuple 2 : " + str(test_tup2))
 
# create pandas DataFrames
df1 = pd.DataFrame(list(test_tup1)).T
df2 = pd.DataFrame(list(test_tup2)).T
 
# perform XOR operation
res_df = df1.astype(int).apply(lambda x: x^df2.astype(int).iloc[0], axis=1)
 
# convert result DataFrame to tuple
res = tuple(res_df.iloc[0].tolist())
 
# print result
print("The XOR tuple : ", res)


Output-

The original tuple 1 : (10, 4, 6, 9)
The original tuple 2 : (5, 2, 3, 3)
The XOR tuple : (15, 6, 5, 10)

The time complexity of this solution is O(n), where n is the length of the tuple.
The space complexity of this solution is O(n), as we are creating a new tuple of length n to store the result.

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments