Sunday, November 17, 2024
Google search engine
HomeLanguagesPython | sympy.harmonic() method

Python | sympy.harmonic() method

With the help of sympy.harmonic() method, we can find Harmonic numbers in SymPy.

harmonic(n)

The nth harmonic number is given by – \operatorname{H}_{n} = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}.

Syntax: harmonic(n)

Parameter:
n – It denotes the number upto which harmonic number is to be calculated.

Returns: Returns the nth harmonic number.

Example #1:




# import sympy 
from sympy import * 
  
n = 7
print("Value of n = {}".format(n))
   
# Use sympy.harmonic() method 
nth_harmonic = harmonic(n)  
      
print("Value of nth harmonic number : {}".format(nth_harmonic))  


Output:

Value of n = 7
Value of nth harmonic number : 363/140
harmonic(n, m)

The nth generalized harmonic number of order m is given by – \operatorname{H}_{n, m} = \sum_{k=1}^{n} \frac{1}{k^m}.

Syntax: harmonic(n, m)

Parameter:
n – It denotes the number upto which harmonic number is to be calculated.
m – It denotes the order of the harmonic number.
Returns: Returns the nth harmonic number of order m.

Example #2:




# import sympy 
from sympy import * 
  
n = 5
m = 2
print("Value of n = {} and m = {}".format(n, m))
   
# Use sympy.harmonic() method 
nth_harmonic_poly = harmonic(n, m)  
      
print("The nth harmonic number of order m : {}".format(nth_harmonic_poly))  


Output:

Value of n = 5 and m = 2
The nth harmonic number of order m : 5269/3600

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments