Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer- and label-based indexing and provides a host of methods for performing operations involving the index.
Pandas Series.aggregate()
function aggregate using one or more operations over the specified axis in the given series object.
Syntax: Series.aggregate(func, axis=0, *args, **kwargs)
Parameter :
func : Function to use for aggregating the data.
axis : Parameter needed for compatibility with DataFrame.
*args : Positional arguments to pass to func.
**kwargs : Keyword arguments to pass to func.Returns : DataFrame, Series or scalar
Example #1: Use Series.aggregate()
function to perform aggregation on the underlying data of the given series object.
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([ 34 , 5 , 13 , 32 , 4 , 15 ]) # Create the Index index_ = [ 'Coca Cola' , 'Sprite' , 'Coke' , 'Fanta' , 'Dew' , 'ThumbsUp' ] # set the index sr.index = index_ # Print the series print (sr) |
Output :
Coca Cola 34 Sprite 5 Coke 13 Fanta 32 Dew 4 ThumbsUp 15 dtype: int64
Now we will use Series.aggregate()
function to find the sum of all the values in the given series object.
# Find the sum of all values result = sr.aggregate(func = sum ) # Print the result print (result) |
Output :
103
As we can see in the output, the Series.aggregate()
function has successfully returned the sum of the underlying data of the given series object.
Example #2 : Use Series.aggregate()
function to perform aggregation on the underlying data of the given series object.
# importing pandas as pd import pandas as pd # Creating the Series sr = pd.Series([ 51 , 10 , 24 , 18 , 1 , 84 , 12 , 10 , 5 , 24 , 0 ]) # Create the Index # apply yearly frequency index_ = pd.date_range( '2010-10-09 08:45' , periods = 11 , freq = 'Y' ) # set the index sr.index = index_ # Print the series print (sr) |
Output :
2010-12-31 08:45:00 51 2011-12-31 08:45:00 10 2012-12-31 08:45:00 24 2013-12-31 08:45:00 18 2014-12-31 08:45:00 1 2015-12-31 08:45:00 84 2016-12-31 08:45:00 12 2017-12-31 08:45:00 10 2018-12-31 08:45:00 5 2019-12-31 08:45:00 24 2020-12-31 08:45:00 0 Freq: A-DEC, dtype: int64
Now we will use Series.aggregate()
function to find the maximum of all the values in the given series object.
# Find the max of all values result = sr.aggregate(func = max ) # Print the result print (result) |
Output :
84
As we can see in the output, the Series.aggregate()
function has successfully returned the maximum of all the values in the given series object.