Friday, November 15, 2024
Google search engine
HomeLanguagesPySpark – Adding a Column from a list of values using a...

PySpark – Adding a Column from a list of values using a UDF

A data frame that is similar to a relational table in Spark SQL, and can be created using various functions in SparkSession is known as a Pyspark data frame. There occur various circumstances in which you get data in the list format but you need it in the form of a column in the data frame. If a similar situation has occurred with you, then you can do it easily by assigning increasing IDs to the data frame and then adding the values in a column. Read the article further to know more about it in detail.

PySpark – Adding a Column from a list of values using a UDF

Example 1:

In the example, we have created a data frame with three columns ‘Roll_Number‘, ‘Fees‘, and ‘Fine‘ as follows:

 

Once created, we assigned continuously increasing IDs to the data frame using the monotonically_increasing_id function. Also, we defined a list of values, i.e., student_names which need to be added as a column to a data frame. Then, with the UDF on increasing Id’s, we assigned values of the list as a column to the data frame and finally displayed the data frame after dropping the increasing Id’s column.

Python3




# PySpark - Adding a Column from a
# list of values using a UDF
  
# Import the libraries SparkSession,
# functions, IntegerType,
# StringType, row_number,
# monotonically_increasing_id and Window
from pyspark.sql import SparkSession, functions as F
from pyspark.sql.types import IntegerType, StringType
from pyspark.sql.functions import row_number, monotonically_increasing_id
from pyspark.sql.window import Window
  
# Create a spark session using getOrCreate() function
spark_session = SparkSession.builder.getOrCreate()
  
# Create a user defined function to assign student names
# according to the row index by subtracting row number from 1
labels_udf = F.udf(lambda indx: student_names[indx-1], StringType())
  
# Create a data frame with three columns 'Roll_Number,' 'Fees' and 'Fine'
df = spark_session.createDataFrame(
    [(1, 10000, 400), (2, 14000, 500), (3, 12000, 800)], 
  ['Roll_Number', 'Fees', 'Fine'])
  
# Define a list of elements
student_names = ['Aman', 'Ishita', 'Vinayak']
  
# Create a column with continuous increasing Id's
df = df.withColumn("num_id", row_number().over(
    Window.orderBy(monotonically_increasing_id())))
  
# Create a new column by calling the user defined function
new_df = df.withColumn('Names', labels_udf('num_id'))
  
# Delete the increasing Id's column and display the data frame
new_df.drop('num_id').show()


Output:

 

Example 2:

In this example, we have used a data set (link), i.e., basically, a 5*5 data set as follows:

 

Then, we assigned continuously increasing IDs to the data frame using the monotonically_increasing_id function. Also, we defined a list of values, i.e., fine_data which needs to be added as a column to the data frame. Then, with the UDF on increasing Id’s, we assigned values of the list as a column to the data frame and finally displayed the data frame after dropping the increasing Id’s column.

Python3




# PySpark - Adding a Column from a list of values using a UDF
  
# Import the libraries SparkSession, functions, IntegerType,
# StringType, row_number, monotonically_increasing_id and Window
from pyspark.sql import SparkSession, functions as F
from pyspark.sql.types import IntegerType, StringType
from pyspark.sql.functions import row_number, monotonically_increasing_id
from pyspark.sql.window import Window
  
# Create a spark session using getOrCreate() function
spark_session = SparkSession.builder.getOrCreate()
  
# Create a user defined function to assign student names
# according to the row index by subtracting row number from 1
labels_udf = F.udf(lambda indx: fine_data[indx-1], IntegerType())
  
# Read the CSV file
df = csv_file = spark_session.read.csv(
    '/content/student_data.csv', sep=',', inferSchema=True, header=True)
  
# Define a list of elements
fine_data = [200, 300, 400, 0, 500]
  
# Create a column with continuous increasing Id's
df = df.withColumn("num_id", row_number().over(
    Window.orderBy(monotonically_increasing_id())))
  
# Create a new column by calling the user defined function
new_df = df.withColumn('fine', labels_udf('num_id'))
  
# Delete the increasing Id's column and display the data frame
new_df.drop('num_id').show()


Output:

 

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments