Sunday, November 17, 2024
Google search engine
HomeLanguagesNLP | Classifier-based Chunking | Set 2

NLP | Classifier-based Chunking | Set 2

Using the data from the treebank_chunk corpus let us evaluate the chunkers (prepared in the previous article). Code #1 : 

Python3




# loading libraries
from chunkers import ClassifierChunker
from nltk.corpus import treebank_chunk
 
train_data = treebank_chunk.chunked_sents()[:3000]
test_data = treebank_chunk.chunked_sents()[3000:]
 
# initializing
chunker = ClassifierChunker(train_data)
 
# evaluation
score = chunker.evaluate(test_data)
 
a = score.accuracy()
p = score.precision()
r = recall
   
print ("Accuracy of ClassifierChunker : ", a)
print ("\nPrecision of ClassifierChunker : ", p)
print ("\nRecall of ClassifierChunker : ", r)


Output :

Accuracy of ClassifierChunker : 0.9721733155838022

Precision of ClassifierChunker : 0.9258838793383068

Recall of ClassifierChunker : 0.9359016393442623

  Code #2 : Let’s compare the performance of conll_train 

Python3




chunker = ClassifierChunker(conll_train)
score = chunker.evaluate(conll_test)
 
a = score.accuracy()
p = score.precision()
r = score.recall()
   
print ("Accuracy of ClassifierChunker : ", a)
print ("\nPrecision of ClassifierChunker : ", p)
print ("\nRecall of ClassifierChunker : ", r)


Output :

Accuracy of ClassifierChunker : 0.9264622074002153

Precision of ClassifierChunker : 0.8737924310910219

Recall of ClassifierChunker : 0.9007354620620346

the word can be passed through the tagger into our feature detector function, by creating nested 2-tuples of the form ((word, pos), iob), The chunk_trees2train_chunks() method produces these nested 2-tuples. The following features are extracted:

  • The current word and part-of-speech tag
  • The previous word and IOB tag, part-of-speech tag
  • The next word and part-of-speech tag

The ClassifierChunker class uses an internal ClassifierBasedTagger and prev_next_pos_iob() as its default feature_detector. The results from the tagger, which are in the same nested 2-tuple form, are then reformatted into 3-tuples to return a final Tree using conlltags2tree().   Code #3 : different classifier builder 

Python3




# loading libraries
from chunkers import ClassifierChunker
from nltk.corpus import treebank_chunk
from nltk.classify import MaxentClassifier
 
train_data = treebank_chunk.chunked_sents()[:3000]
test_data = treebank_chunk.chunked_sents()[3000:]
 
 
builder = lambda toks: MaxentClassifier.train(
            toks, trace = 0, max_iter = 10, min_lldelta = 0.01)
 
chunker = ClassifierChunker(
        train_data, classifier_builder = builder)
 
score = chunker.evaluate(test_data)
   
a = score.accuracy()
p = score.precision()
r = score.recall()
 
print ("Accuracy of ClassifierChunker : ", a)
print ("\nPrecision of ClassifierChunker : ", p)
print ("\nRecall of ClassifierChunker : ", r)


Output :

Accuracy of ClassifierChunker : 0.9743204362949285

Precision of ClassifierChunker : 0.9334423548650859

Recall of ClassifierChunker : 0.9357377049180328

ClassifierBasedTagger class defaults to using NaiveBayesClassifier.train as its classifier_builder. But any classifier can be used by overriding the classifier_builder keyword argument.

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments