Matplotlib is an amazing visualization library in Python for 2D plots of arrays. Matplotlib is a multi-platform data visualization library built on NumPy arrays and designed to work with the broader SciPy stack.
matplotlib.dates.epoch2num()
The matplotlib.dates.epoch2num()
function is used to convert an epoch or a sequence of epochs to a new date format from the day since 0001.
Syntax: matplotlib.dates.epoch2num(e)
Parameters:
- e: It can be an epoch or a sequence of epochs.
Returns: A new date format since day 0001.
Example 1:
import random import matplotlib.pyplot as plt import matplotlib.dates as mdates # generate some random data # for approx 5 yrs random_data = [ float (random.randint( 1487517521 , 14213254713 )) for _ in range ( 1000 )] # convert the epoch format to # matplotlib date format mpl_data = mdates.epoch2num(random_data) # plotting the graph fig, axes = plt.subplots( 1 , 1 ) axes.hist(mpl_data, bins = 51 , color = 'green' ) locator = mdates.AutoDateLocator() axes.xaxis.set_major_locator(locator) axes.xaxis.set_major_formatter(mdates.AutoDateFormatter(locator)) plt.show() |
Output:
Example 2:
from tkinter import * from tkinter import ttk import time import matplotlib import queue from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk from matplotlib.figure import Figure import matplotlib.animation as animation import matplotlib.dates as mdate root = Tk() graphXData = queue.Queue() graphYData = queue.Queue() def animate(objData): line.set_data( list (graphXData.queue), list (graphYData.queue)) axes.relim() axes.autoscale_view() figure = Figure(figsize = ( 5 , 5 ), dpi = 100 ) axes = figure.add_subplot( 111 ) axes.xaxis_date() line, = axes.plot([], []) axes.xaxis.set_major_formatter(mdate.DateFormatter( '%H:%M' )) canvas = FigureCanvasTkAgg(figure, root) canvas.get_tk_widget().pack(side = BOTTOM, fill = BOTH, expand = True ) for cnt in range ( 600 ): graphXData.put(matplotlib.dates.epoch2num(time.time() - ( 600 - cnt))) graphYData.put( 0 ) ani = animation.FuncAnimation(figure, animate, interval = 1000 ) root.mainloop() |
Output: