Kaiser window is a taper formed by using a Bessel function.
Syntax : numpy.kaiser(M, beta)
Parameters :
M : [int] Number of points in the output window. If zero or less, an empty array is returned.
beta : [float] Shape parameter for window.Returns:
out : [array] The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd).
Example:
import numpy as np print (np.kaiser( 12 , 14 )) |
Output:
[ 7.72686684e-06 3.46009194e-03 4.65200189e-02 2.29737120e-01 5.99885316e-01 9.45674898e-01 9.45674898e-01 5.99885316e-01 2.29737120e-01 4.65200189e-02 3.46009194e-03 7.72686684e-06]
Plotting the window and its frequency response –
For Window :
import numpy as np import matplotlib.pyplot as plt from numpy.fft import fft, fftshift window = np.kaiser( 51 , 14 ) plt.plot(window) plt.title( "Kaiser window" ) plt.ylabel( "Amplitude" ) plt.xlabel( "Sample" ) plt.show() |
Output:
For frequency :
import numpy as np import matplotlib.pyplot as plt from numpy.fft import fft, fftshift window = np.kaiser( 51 , 14 ) plt.figure() A = fft(window, 2048 ) / 25.5 mag = np. abs (fftshift(A)) freq = np.linspace( - 0.5 , 0.5 , len (A)) response = 20 * np.log10(mag) response = np.clip(response, - 100 , 100 ) plt.plot(freq, response) plt.title( "Frequency response of Kaiser window" ) plt.ylabel( "Magnitude [dB]" ) plt.xlabel( "Normalized frequency [cycles per sample]" ) plt.axis( "tight" ) plt.show() |
Output: