Permutation.signature() : signature() is a sympy Python library function that returns the signature of the permutation needed to place the elements of the permutation in canonical order.
Signature = (-1)^<number of inversions>
Syntax : sympy.combinatorics.permutations.Permutation.signature()
Return : signature of the permutation.
Code #1 : signature() Example
# Python code explaining # SymPy.Permutation.signature() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from sympy.combinatorics.permutations.Permutation.signature() method # creating Permutation a = Permutation([[ 2 , 0 ], [ 3 , 1 ]]) b = Permutation([ 1 , 3 , 5 , 4 , 2 , 0 ]) print ( "Permutation a - signature form : " , a.signature()) print ( "Permutation b - signature form : " , b.signature()) |
Output :
Permutation a – signature form : 1
Permutation b – signature form : -1
Code #2 : signature() Example
# Python code explaining # SymPy.Permutation.signature() # importing SymPy libraries from sympy.combinatorics.partitions import Partition from sympy.combinatorics.permutations import Permutation # Using from # sympy.combinatorics.permutations.Permutation.signature() method # creating Permutation a = Permutation([[ 2 , 4 , 0 ], [ 3 , 1 , 2 ], [ 1 , 5 , 6 ]]) print ( "Permutation a - signature form : " , a.signature()) |
Output :
Permutation a – signature form : 1