Wednesday, November 27, 2024
Google search engine
HomeLanguagesnumpy.require() in Python

numpy.require() in Python

numpy.require() function is useful for the array when correct flags is returned satisfies requirements for passing to compiled code (perhaps through ctypes).

Syntax: numpy.require(a, dtype=None, requirements=None)

Parameters:

a :  array_like

dtype : data-type

requirements : str or list of str 

The requirements list can be any of the following.

  • ‘F’ : ‘F_CONTIGUOUS’  – ensure a Fortran-contiguous array.
  • ‘C’  : ‘C_CONTIGUOUS’ – ensure a C-contiguous array.
  • ‘A’ : ‘ALIGNED’  – ensure a data-type aligned array.
  • ‘W’ : ‘WRITABLE’  – ensure a writable array.
  • ‘O’ : ‘OWNDATA’ – ensure an array that owns its own data.
  • ‘E’ : ‘ENSUREARRAY’ – ensure a base array, instead of a subclass.

Returns :  ndarray

Exception : ValueError – Raises ValueError

Code #1:

Python3




# Python program explaining
# numpy.require() function
 
# importing numpy
import numpy as np
 
# creating 4 x 4 array
data = np.arange(16).reshape(4, 4)
 
data.flags


Output:

C_CONTIGUOUS : True
  F_CONTIGUOUS : False
  OWNDATA : False
  WRITABLE : True
  ALIGNED : True
  WRITEBACKIFCOPY : False
  UPDATEIFCOPY : False

Code #2:

Python3




import numpy as np
 
# Python program explaining
# numpy.require()
b = np.require(data, dtype=np.float32,
               requirements=['A', 'W', 'O', 'C'])
b.flags


Output:

C_CONTIGUOUS : True
  F_CONTIGUOUS : False
  OWNDATA : True
  WRITABLE : True
  ALIGNED : True
  WRITEBACKIFCOPY : False
  UPDATEIFCOPY : False

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments