The numpy.isneginf() function tests element-wise whether it is negative infinity or not, and returns the result as a boolean array.
Syntax :
numpy.isneginf(array, y = None)
Parameters :
array : [array_like]Input array or object whose elements, we need to test for infinity. y : [array_like]A boolean array with the same shape and type as x to store the result.
Return :
boolean array containing the result. For scalar input, the result is a new boolean with value True if the input is positive or negative infinity; otherwise the value is False. For array input, the result is a boolean array with the same shape as the input and the values are True where the corresponding element of the input is positive or negative infinity; elsewhere the values are False.
Code 1 :
Python
# Python Program illustrating # numpy.isneginf() method import numpy as geek print ( "Negative : " , geek.isneginf( 1 ), "\n" ) print ( "Negative : " , geek.isneginf( 0 ), "\n" ) # not a number print ( "Negative : " , geek.isneginf(geek.nan), "\n" ) # infinity print ( "Negative : " , geek.isneginf(geek.inf), "\n" ) print ( "Negative : " , geek.isneginf(geek.NINF), "\n" ) x = geek.array([ - geek.inf, 0. , geek.inf]) y = geek.array([ 2 , 2 , 2 ]) print ( "Checking for negativity : " , geek.isneginf(x, y)) |
Output :
Negative : False Negative : False Negative : False Negative : False Negative : True Checking for negativity : [1 0 0]
Code 2 :
Python
# Python Program illustrating # numpy.isneginf() method import numpy as geek # Returns True/False value for each element b = geek.arange( 18 ).reshape( 3 , 6 ) print ( "\n" ,b) print ( "\nIs Negative Infinity : \n" , geek.isneginf(b)) # geek.inf : Positive Infinity # geek.NINF : negative Infinity b = [[geek.inf], [geek.NINF]] print ( "\nIs Negative Infinity : \n" , geek.isneginf(b)) |
Output :
[[ 0 1 2 3 4 5] [ 6 7 8 9 10 11] [12 13 14 15 16 17]] Is Negative Infinity : [[False False False False False False] [False False False False False False] [False False False False False False]] Is Negative Infinity : [[False] [ True]]
References :
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.isneginf.html
Note :
These codes won’t run on online IDE’s. So please, run them on your systems to explore the working.
.
This article is contributed by Mohit Gupta_OMG 😀. If you likeneveropen and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on theneveropen main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.