Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. It is an amazing visualization library in Python for 2D plots of arrays and used for working with the broader SciPy stack.
matplotlib.axis.Axis.axis_date() Function
The Axis.axis_date() function in axis module of matplotlib library is used to set up axis ticks and labels treating data along this axis as dates.
Syntax: Axis.axis_date(self, tz=None)
Parameters: This method accepts the following parameters.
- tz : This parameter is the timezone used to create date labels.
Return value: This method does not return any value.
Below examples illustrate the matplotlib.axis.Axis.axis_date() function in matplotlib.axis:
Example 1:
Python3
# Implementation of matplotlib function from matplotlib.axis import Axis import datetime as dt import matplotlib.pyplot as plt from matplotlib.dates import DateFormatter, MinuteLocator x = [ 16.7 , 16.8 , 17.1 , 17.4 ] y = [ 15 , 17 , 14 , 16 ] plt.plot(x, y) plt.gca().yaxis.axis_date() plt.title("Matplotlib.axis.Axis.axis_date()\ Function Example", fontsize = 12 , fontweight = 'bold' ) plt.show() |
Output:
Example 2:
Python3
# Implementation of matplotlib function from matplotlib.axis import Axis from datetime import datetime import matplotlib.pyplot as plt from matplotlib.dates import ( DateFormatter, AutoDateLocator, AutoDateFormatter, datestr2num ) days = [ '30/01/2019' , '31/01/2019' , '01/02/2019' , '02/02/2019' , '03/02/2019' , '04/02/2019' ] data1 = [ 2 , 5 , 13 , 6 , 11 , 7 ] data2 = [ 6 , 3 , 10 , 3 , 6 , 5 ] z = datestr2num([ datetime.strptime(day, '%d/%m/%Y' ).strftime( '%m/%d/%Y' ) for day in days ]) r = 0.25 figure = plt.figure(figsize = ( 8 , 4 )) axes = figure.add_subplot( 111 ) axes.bar(z - r, data1, width = 2 * r, color = 'g' , align = 'center' , tick_label = days) axes.bar(z + r, data2, width = 2 * r, color = 'y' , align = 'center' , tick_label = days) axes.xaxis.axis_date() plt.title("Matplotlib.axis.Axis.axis_date()\ Function Example", fontsize = 12 , fontweight = 'bold' ) plt.show() |
Output: