Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The Axes Class contains most of the figure elements: Axis, Tick, Line2D, Text, Polygon, etc., and sets the coordinate system. And the instances of Axes supports callbacks through a callbacks attribute.
matplotlib.axes.Axes.bxp() Function
The Axes.bxp() function in axes module of matplotlib library is used to make a box and whisker plot for each column of x or each vector in sequence x.
Syntax: Axes.bxp(self, bxpstats, positions=None, widths=None, vert=True, patch_artist=False, shownotches=False, showmeans=False, showcaps=True, showbox=True, showfliers=True, boxprops=None, whiskerprops=None, flierprops=None, medianprops=None, capprops=None, meanprops=None, meanline=False, manage_ticks=True, zorder=None)
Parameters: This method accept the following parameters that are described below:
- bxpstats : This parameter is alist of dictionaries containing stats for each boxplot.
- positions : This parameter is used to sets the positions of the violins.
- vert: This parameter is an optional parameter and contain boolean value. It makes the vertical violin plot if true.Otherwise horizontal.
- widths: This parameter is used to sets the width of each violin either with a scalar or a sequence.
- patch_artist : This parameter is used to produce boxes with the Line2D artist if it is false. Otherwise, boxes with Patch artists.
- manage_ticks : This parameter is used to adjust the tick locations and labels.
- zorder : This parameter is used to sets the zorder of the boxplot.
- shownotches: This parameter contain boolean value. It is used to produce a notched and rectangular box plot.
- showmeans : This parameter contain boolean value. It is used to toggle rendering of the means.
- showcaps : This parameter contain boolean value. It is used to toggle rendering of the caps.
- showfliers : This parameter contain boolean value. It is used to toggle rendering of the fliers.
- boxprops : This parameter is used to set the plotting style of the boxes.
- whiskerprops : This parameter is used to set the plotting style of the whiskers.
- capprops : This parameter is used to set the plotting style of the caps.
- flierprops : This parameter is used to set the plotting style of the fliers.
- medianprops : This parameter is used to set the plotting style of the medians.
- meanprops : This parameter is used to set the plotting style of the means.
Returns: This returns the following:
- result :This returns the dictionary which maps each component of the violinplot to a list of the matplotlib.lines.Line2D instances.
Below examples illustrate the matplotlib.axes.Axes.bxp() function in matplotlib.axes:
Example-1:
import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook np.random.seed( 10 * * 7 ) data = np.random.lognormal(size = ( 10 , 4 ), mean = 4.5 , sigma = 4.75 ) labels = [ 'G1' , 'G2' , 'G3' , 'G4' ] result = cbook.boxplot_stats(data, labels = labels, bootstrap = 1000 ) for n in range ( len (result)): result[n][ 'med' ] = np.median(data) result[n][ 'mean' ] * = 0.1 fig, axes1 = plt.subplots() axes1.bxp(result) axes1.set_title( 'matplotlib.axes.Axes.bxp() Example' ) plt.show() |
Output:
Example-2:
import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook np.random.seed( 10 * * 7 ) data = np.random.lognormal(size = ( 37 , 4 ), mean = 4.5 , sigma = 1.75 ) labels = [ 'G1' , 'G2' , 'G3' , 'G4' ] stats = cbook.boxplot_stats(data, labels = labels, bootstrap = 100 ) for n in range ( len (stats)): stats[n][ 'med' ] = np.median(data) stats[n][ 'mean' ] * = 2 fig, [axes1, axes2, axes3] = plt.subplots(nrows = 1 , ncols = 3 , sharey = True ) axes1.bxp(stats) axes2.bxp(stats, showmeans = True ) axes3.bxp(stats, showmeans = True , meanline = True ) axes2.set_title( 'matplotlib.axes.Axes.bxp() Example' ) plt.show() |
Output: