With the help of sympy.stats.Levy()
method, we can get the continuous random variable which represents the levy distribution.
Syntax :
sympy.stats.Levy(name, mu, c)
Where, mu and c are real number and mu, c > 0.
Return : Return the continuous random variable.
Example #1 :
In this example we can see that by using sympy.stats.Levy()
method, we are able to get the continuous random variable representing levy distribution by using this method.
# Import sympy and Levy from sympy.stats import Levy, density from sympy import Symbol, pprint z = Symbol( "z" ) mu = Symbol( "mu" , positive = True ) c = Symbol( "c" , positive = True ) # Using sympy.stats.Levy() method X = Levy( "x" , mu, c) gfg = density(X)(z) pprint(gfg) |
Output :
sqrt(2)*sqrt(c)*exp(-c/(-2*mu + 2*z))/(2*sqrt(pi)*(-mu + z)**(3/2))
Example #2 :
# Import sympy and Levy from sympy.stats import Levy, density from sympy import Symbol, pprint z = 0.3 mu = 3 c = 2 # Using sympy.stats.Levy() method X = Levy( "x" , mu, c) gfg = density(X)(z) pprint(gfg) |
Output :
0.014240812169263