With the help of ratint() method, we can compute the indefinite integration of a rational function. If a function is a rational function, their is a Lazard Rioboo Trager and the Horowitz Ostrogradsky algorithms that are implemented in this method.
Syntax : ratint(f, x, **flags)
Return : Return the integrated function.
Example #1 :
In this example we can see that by using ratint() method, we are able to compute the indefinite integration of a rational function and return the integrated function by using this method.
Python3
# import ratint from sympy.integrals.rationaltools import ratint from sympy.abc import x # Using ratint() method gfg = ratint((x * * 5 - 2 * x * * 3 + x - 2 ) / 12 , x) print (gfg) |
Output :
x**6/72 – x**4/24 + x**2/24 – x/6
Example #2 :
Python3
# import ratint from sympy.integrals.rationaltools import ratint from sympy.abc import y # Using ratint() method gfg = ratint(( 3 * y * * 3 + 4 * x * * 2 + y - 2 ), y) print (gfg) |
Output :
3*y**4/4 + y**2/2 + y*(4*x**2 – 2)