scipy.stats.halfcauchy() is an Half-Cauchy continuous random variable that is defined with a standard format and some shape parameters to complete its specification.
Parameters :
-> q : lower and upper tail probability
-> x : quantiles
-> loc : [optional]location parameter. Default = 0
-> scale : [optional]scale parameter. Default = 1
-> size : [tuple of ints, optional] shape or random variates.
-> moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance, ‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).Results : Half-Cauchy continuous random variable
Code #1 : Creating Half-Cauchy continuous random variable
from scipy.stats import halfcauchy numargs = halfcauchy.numargs [] = [ 0.7 , ] * numargs rv = halfcauchy) print ( "RV : \n" , rv) |
Output :
RV : <scipy.stats._distn_infrastructure.rv_frozen object at 0x000001E39A272470>
Code #2 : Half-Cauchy random variates and probability distribution
import numpy as np quantile = np.arange ( 0.01 , 1 , 0.1 ) # Random Variates R = halfcauchy.rvs(scale = 2 , size = 10 ) print ( "Random Variates : \n" , R) # PDF R = halfcauchy.pdf(quantile, loc = 0 , scale = 1 ) print ( "\nProbability Distribution : \n" , R) |
Output :
Random Variates : [ 6.99019514 4.03402743 6.59099197 2.54849344 5.22950683 0.02399243 0.43431935 2.38057697 8.43432847 10.53182273] Probability Distribution : [0.63655612 0.62900877 0.60973065 0.58080446 0.54500451 0.50521369 0.46397476 0.42325628 0.38440902 0.34824122]
Code #3 : Graphical Representation.
import numpy as np import matplotlib.pyplot as plt distribution = np.linspace( 0 , np.minimum(rv.dist.b, 3 )) print ( "Distribution : \n" , distribution) plot = plt.plot(distribution, rv.pdf(distribution)) |
Output :
Distribution : [0. 0.06122449 0.12244898 0.18367347 0.24489796 0.30612245 0.36734694 0.42857143 0.48979592 0.55102041 0.6122449 0.67346939 0.73469388 0.79591837 0.85714286 0.91836735 0.97959184 1.04081633 1.10204082 1.16326531 1.2244898 1.28571429 1.34693878 1.40816327 1.46938776 1.53061224 1.59183673 1.65306122 1.71428571 1.7755102 1.83673469 1.89795918 1.95918367 2.02040816 2.08163265 2.14285714 2.20408163 2.26530612 2.32653061 2.3877551 2.44897959 2.51020408 2.57142857 2.63265306 2.69387755 2.75510204 2.81632653 2.87755102 2.93877551 3. ]
Code #4 : Varying Positional Arguments
import matplotlib.pyplot as plt import numpy as np x = np.linspace( 0 , 5 , 100 ) # Varying positional arguments y1 = halfcauchy .pdf(x, 1 , 3 ) y2 = halfcauchy .pdf(x, 1 , 4 ) plt.plot(x, y1, "*" , x, y2, "r--" ) |
Output :