scipy.stats.frechet_l() is an Frechet left (or Weibull maximum) continuous random variable that is defined with a standard format and some shape parameters to complete its specification.
Parameters :
-> q : lower and upper tail probability
-> a : shape parameters
-> x : quantiles
-> loc : [optional]location parameter. Default = 0
-> scale : [optional]scale parameter. Default = 1
-> size : [tuple of ints, optional] shape or random variates.
-> moments : [optional] composed of letters [‘mvsk’]; ‘m’ = mean, ‘v’ = variance,
‘s’ = Fisher’s skew and ‘k’ = Fisher’s kurtosis. (default = ‘mv’).Results : Frechet left continuous random variable
Code #1 : Creating Frechet left continuous random variable
from scipy.stats import frechet_l numargs = frechet_l .numargs [a] = [ 0.7 , ] * numargs rv = frechet_l (a) print ( "RV : \n" , rv) |
Output :
RV : <scipy.stats._distn_infrastructure.rv_frozen object at 0x0000018D578BC9E8>
Code #2 : Frechet left random variates and probability distribution.
import numpy as np quantile = np.arange ( 0.01 , 1 , 0.1 ) # Random Variates R = frechet_l.rvs(a, scale = 2 , size = 10 ) print ( "Random Variates : \n" , R) # PDF R = frechet_l.pdf(a, quantile, loc = 0 , scale = 1 ) print ( "\nProbability Distribution : \n" , R) |
Output :
Random Variates : [-4.66775585e-02 -3.75425255e+00 -2.32248407e-01 -1.20807347e-03 -6.26373883e+00 -1.14007755e+00 -5.09499683e+00 -4.18191271e-01 -4.33720753e+00 -1.05442843e+00] Probability Distribution : [0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
Code #3 : Varying Positional Arguments
import matplotlib.pyplot as plt import numpy as np x = np.linspace( 0 , 5 , 100 ) # Varying positional arguments y1 = frechet_l.pdf(x, 1 , 3 ) y2 = frechet_l.pdf(x, 1 , 4 ) plt.plot(x, y1, "*" , x, y2, "r--" ) |
Output :