Saturday, November 16, 2024
Google search engine
HomeLanguagesPython3 Program to Maximize sum of diagonal of a matrix by rotating...

Python3 Program to Maximize sum of diagonal of a matrix by rotating all rows or all columns

Given a square matrix, mat[][] of dimensions N * N, the task is find the maximum sum of diagonal elements possible from the given matrix by rotating either all the rows or all the columns of the matrix by a positive integer.

Examples:

Input: mat[][] = { { 1, 1, 2 }, { 2, 1, 2 }, { 1, 2, 2 } }
Output:
Explanation: 
Rotating all the columns of matrix by 1 modifies mat[][] to { {2, 1, 2}, {1, 2, 2}, {1, 1, 2} }. 
Therefore, the sum of diagonal elements of the matrix = 2 + 2 + 2 = 6 which is the maximum possible.

Input: A[][] = { { -1, 2 }, { -1, 3 } }
Output: 2

Approach: The idea is to rotate all the rows and columns of the matrix in all possible ways and calculate the maximum sum obtained. Follow the steps to solve the problem:

  • Initialize a variable, say maxDiagonalSum to store the maximum possible sum of diagonal elements the matrix by rotating all the rows or columns of the matrix.
  • Rotate all the rows of the matrix by a positive integer in the range [0, N – 1] and update the value of maxDiagonalSum.
  • Rotate all the columns of the matrix by a positive integer in the range [0, N – 1] and update the value of maxDiagonalSum.
  • Finally, print the value of maxDiagonalSum.

Below is the implementation of the above approach:

Python3




# Python3 program to implement
# the above approach
import sys
  
N = 3
  
# Function to find maximum sum of diagonal
# elements of matrix by rotating either 
# rows or columns
def findMaximumDiagonalSumOMatrixf(A):
      
    # Stores maximum diagonal sum of elements
    # of matrix by rotating rows or columns
    maxDiagonalSum = -sys.maxsize - 1
  
    # Rotate all the columns by an integer
    # in the range [0, N - 1]
    for i in range(N):      
  
        # Stores sum of diagonal elements
        # of the matrix
        curr = 0
          
        # Calculate sum of diagonal 
        # elements of the matrix
        for j in range(N):
              
            # Update curr
            curr += A[j][(i + j) % N]
         
        # Update maxDiagonalSum
        maxDiagonalSum = max(maxDiagonalSum, 
                             curr)
                               
    # Rotate all the rows by an integer
    # in the range [0, N - 1]
    for i in range(N):
          
        # Stores sum of diagonal elements
        # of the matrix
        curr = 0
          
        # Calculate sum of diagonal 
        # elements of the matrix
        for j in range(N):          
              
            # Update curr
            curr += A[(i + j) % N][j]
          
        # Update maxDiagonalSum
        maxDiagonalSum = max(maxDiagonalSum, 
                             curr)
                               
    return maxDiagonalSum
  
# Driver code
if __name__ == "__main__":
      
    mat = [ [ 1, 1, 2 ], 
            [ 2, 1, 2 ], 
            [ 1, 2, 2 ] ]
      
    print(findMaximumDiagonalSumOMatrixf(mat))
      
# This code is contributed by chitranayal


Output: 

6

 

Time Complexity: O(N2) 
Auxiliary Space: O(1)

Please refer complete article on Maximize sum of diagonal of a matrix by rotating all rows or all columns for more details!

Feeling lost in the world of random DSA topics, wasting time without progress? It’s time for a change! Join our DSA course, where we’ll guide you on an exciting journey to master DSA efficiently and on schedule.
You’ll access excellent video content by our CEO, Sandeep Jain, tackle common interview questions, and engage in real-time coding contests covering various DSA topics. We’re here to prepare you thoroughly for online assessments and interviews.
Ready to dive in? Explore our free demo content and join our DSA course, trusted by over 100,000 neveropen! Whether it’s DSA in C++, Java, Python, or JavaScript we’ve got you covered. Let’s embark on this exciting journey together!

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments