TensorFlow is open-source Python library designed by Google to develop Machine Learning models and deep learning neural networks.
unsorted_segment_mean() is used to find the mean of segments.
Syntax: tensorflow.math.unsorted_segment_mean( data, segment_ids, num_segments, name )
Parameter:
- data: It is a tensor. Allowed dtypes are float32, float64, int32, uint8, int16, int8, int64, bfloat16, uint16, half, uint32, uint64.
- segment_ids: It’s 1-D tensor with sorted values. It’s size should be equal to size of first dimension of data. It represents number of distinct segment IDs. Allowed dtypes are int32 and int64.
- num_segments: It is a Tensor. Allowed dtypes are int32 and int64.
- name(optional): It defines the name for the operation.
Return: It returns a tensor of dtype as x.
Example 1:
Python3
# importing the library import tensorflow as tf # Initializing the input tensor data = tf.constant([ 1 , 2 , 3 ]) segment_ids = tf.constant([ 2 , 2 , 2 ]) # Printing the input tensor print ( 'data: ' , data) print ( 'segment_ids: ' , segment_ids) # Calculating result res = tf.math.unsorted_segment_mean(data, segment_ids, tf.constant( 3 )) # Printing the result print ( 'Result: ' , res) |
Output:
data: tf.Tensor([1 2 3], shape=(3, ), dtype=int32) segment_ids: tf.Tensor([2 2 2], shape=(3, ), dtype=int32) Result: tf.Tensor([0. 0. 2.], shape=(3, ), dtype=float64)
Example 2:
Python3
# importing the library import tensorflow as tf # Initializing the input tensor data = tf.constant([[ 1 , 2 , 3 ], [ 4 , 5 , 6 ], [ 7 , 8 , 9 ]]) segment_ids = tf.constant([ 0 , 0 , 2 ]) # Printing the input tensor print ( 'data: ' , data) print ( 'segment_ids: ' , segment_ids) # Calculating result res = tf.math.unsorted_segment_mean(data, segment_ids, tf.constant( 3 )) # Printing the result print ( 'Result: ' , res) |
Output:
data: tf.Tensor( [[1 2 3] [4 5 6] [7 8 9]], shape=(3, 3), dtype=int32) segment_ids: tf.Tensor([0 0 2], shape=(3, ), dtype=int32) Result: tf.Tensor( [[2.5 3.5 4.5] [0. 0. 0. ] [7. 8. 9. ]], shape=(3, 3), dtype=float64)