With the help of sympy.binomial_coefficients() method, we can find binomial coefficients for a given integer. The method returns a dictionary containing pairs where are binomial coefficients and .
Syntax: binomial_coefficients(n)
Parameter:
n – It denotes an integers.Returns: Returns a dictionary containing pairs (k1, k2) : Ckn where Ckn are binomial coefficients and n = k1 + k2.
Example #1:
# import binomial_coefficients() method from sympy from sympy.ntheory import binomial_coefficients n = 6 # Use binomial_coefficients() method binomial_coefficients_n = binomial_coefficients(n) print ( "binomial_coefficients({}) = {} " . format (n, binomial_coefficients_n)) |
Output:
binomial_coefficients(6) = {(3, 3): 20, (1, 5): 6, (6, 0): 1, (0, 6): 1, (4, 2): 15, (5, 1): 6, (2, 4): 15}
Example #2:
# import binomial_coefficients() method from sympy from sympy.ntheory import binomial_coefficients n = 9 # Use binomial_coefficients() method binomial_coefficients_n = binomial_coefficients(n) print ( "binomial_coefficients({}) = {} " . format (n, binomial_coefficients_n)) |
Output:
binomial_coefficients(9) = {(2, 7): 36, (9, 0): 1, (8, 1): 9, (5, 4): 126, (6, 3): 84, (4, 5): 126, (1, 8): 9, (3, 6): 84, (0, 9): 1, (7, 2): 36}