Sunday, November 17, 2024
Google search engine
HomeLanguagesPython | Pandas Series.reindex_like()

Python | Pandas Series.reindex_like()

Pandas series is a One-dimensional ndarray with axis labels. The labels need not be unique but must be a hashable type. The object supports both integer and label-based indexing and provides a host of methods for performing operations involving the index.

Pandas Series.reindex_like() function return an object with matching indices as other object. It conform the object to the same index on all axes.

Syntax: Series.reindex_like(other, method=None, copy=True, limit=None, tolerance=None)

Parameter :
other : Its row and column indices are used to define the new indices of this object.
method : Method to use for filling holes in reindexed DataFrame.
copy : Return a new object, even if the passed indexes are the same.
limit : Maximum number of consecutive labels to fill for inexact matches.
tolerance : Maximum distance between original and new labels for inexact matches.

Returns : Series or DataFrame

Example #1: Use Series.reindex_like() function to reindex the given series object based on the other object.




# importing pandas as pd
import pandas as pd
  
# Creating the first Series
sr1 = pd.Series([10, 25, 3, 11, 24, 6])
  
# Create the Index
index_ = ['Coca Cola', 'Sprite', 'Coke', 'Fanta', 'Dew', 'ThumbsUp']
  
# set the index
sr1.index = index_
  
# Print the series
print(sr1)
  
# Creating the second Series
sr2 = pd.Series([10, 25, 3, 11, 24, 6, 25, 45])
  
# Create the Index
index_ = ['Coca Cola', 'Sprite', 'Coke', 'Fanta',
            'Dew', 'ThumbsUp', 'Mirinda', 'Appy']
  
# set the index
sr2.index = index_
  
# Print the series
print(sr2)


Output :

Now we will use Series.reindex_like() function to reindex the sr2 series object based on sr1.




# reindex sr2 using sr1
result = sr2.reindex_like(sr1)
  
# Print the result
print(result)


Output :


As we can see in the output, the Series.reindex_like() function has successfully reindexed sr2 object using sr1. Notice for the extra labels has been dropped.

Example #2 : Use Series.reindex_like() function to reindex the given series object based on the other object.




# importing pandas as pd
import pandas as pd
  
# Creating the first Series
sr1 = pd.Series(['New York', 'Chicago', 'Toronto', 'Lisbon', 'Rio'])
  
# Create the Index
index_ = ['City 1', 'City 2', 'City 3', 'City 4', 'City 5'
  
# set the index
sr1.index = index_
  
# Print the series
print(sr1)
  
# Creating the second Series
sr2 = pd.Series(['New York', 'Toronto', 'Lisbon', 'Rio'])
  
# Create the Index
index_ = ['City 1', 'City 3', 'City 4', 'City 5'
  
# set the index
sr2.index = index_
  
# Print the series
print(sr2)


Output :

Now we will use Series.reindex_like() function to reindex the sr2 series object based on sr1.




# reindex sr2 using sr1
result = sr2.reindex_like(sr1)
  
# Print the result
print(result)


Output :

As we can see in the output, the Series.reindex_like() function has successfully reindexed sr2 object using sr1. Notice for the newer additions NaN values has been used.

Dominic Rubhabha-Wardslaus
Dominic Rubhabha-Wardslaushttp://wardslaus.com
infosec,malicious & dos attacks generator, boot rom exploit philanthropist , wild hacker , game developer,
RELATED ARTICLES

Most Popular

Recent Comments