With the help of Numpy ndarray.__copy__()
method, we can make a copy of all the data elements that is present in numpy array. If you change any data element in the copy, it will not affect the original numpy array.
Syntax :
numpy.__copy__()
Return : Copy of all the data elements
Example #1 :
In this example we can see that with the help of numpy.__copy__()
method we are making the copy of an elements.
# import the important module in python import numpy as np # make an array with numpy gfg = np.array([ 1 , 2 , 3 , 4 , 5 ]) # applying ndarray.__copy__() method neveropen = gfg.__copy__() print (neveropen) |
[1 2 3 4 5]
Example #2 :
# import the important module in python import numpy as np # make an array with numpy gfg = np.array([[ 1 , 2 , 3 , 4 , 5 ], [ 6 , 5 , 4 , 3 , 2 ]]) # applying ndarray.__copy__() method neveropen = gfg.__copy__() # Change the data element neveropen[ 0 ][ 2 ] = 10 print (gfg, end = '\n\n' ) print (neveropen) |
[[1 2 3 4 5] [6 5 4 3 2]] [[ 1 2 10 4 5] [ 6 5 4 3 2]]