With the help of numpy.random.noncentral_chisquare() method, we can get the random samples of noncentral chi-square distribution and return the random samples of it by using this method.
Syntax : numpy.random.noncentral_chisquare(df, nonc, size=None)
Return : Return the random samples as numpy array.
Example #1 :
In this example we can see that by using numpy.random.noncentral_chisquare() method, we are able to get the random samples of noncentral chi-square distribution and return the random samples by using this method.
Python3
# import numpy import numpy as np import matplotlib.pyplot as plt # Using noncentral_chisquare() method gfg = np.random.noncentral_chisquare( 1.21 , 9.89 , 1000 ) count, bins, ignored = plt.hist(gfg, 30 , density = True ) plt.show() |
Output :
Example #2 :
Python3
# import numpy import numpy as np import matplotlib.pyplot as plt # Using noncentral_chisquare() method gfg = np.random.noncentral_chisquare( 14.05 , 3.24 , 3000 ) count, bins, ignored = plt.hist(gfg, 14 , density = True ) plt.show() |
Output :